For the answer to the question above, I believe that <span>the mutation is likely in any type of regulatory sequence.The mutation is probably acting to reduce or prevent transcription initiation.</span>
I hope my answer helped you in some ways.
I'm gonna say D HOPE IT HELPSSSSSS
Answer and explanation;
-There are advantages to being multicellular rather than unicellular. These include; allowing the organism to be larger, allowing
cell differentiation (having different types of cells with different functions)
, and also allowing the organisms to be more complex.
-Complex organisms often have specialized cells that carry out different functions. Having specialized cells and systems allows the process such as transport of nutrients and waste to and from all the cells of the body to occur.
Answer:
The stable, end stage of ecological succession in which the plants and animals of a community use resources efficiently and balance is maintained by disturbances such as fire. The ultimate goal of ecological succession. After a natural disaster and continues until a climax community is reached.
Explanation:
Answer:
How do proteins adopt and maintain a stable folded structure? What features of the protein amino acid sequence determine the stability of the folded structure?
Proteins are formed by three-dimensional structures (twisted, folded or rolled over themselves) determined by the sequence of amino acids which are linked by peptide bonds. Among these bonds, what determines the most stable conformation of proteins is their tendency to maintain a native conformation, which are stabilized by chemical interactions such as: disulfide bonds, H bonds, ionic bonds and hydrophobic interactions.
How does disruption of that structure lead to protein deposition diseases such as amyloidosis, Alzheimer's disease, and Parkinson's disease?
The accumulation of poorly folded proteins can cause amyloid diseases, a group of several common diseases, including Alzheimer's disease and Parkinson's disease. As the human being ages, the balance of protein synthesis, folding and degradation is disturbed, which causes the accumulation of poorly folded proteins in aggregates, which can manifest itself in the nervous system and in peripheral tissues. The genes and protein products involved in these diseases are called amyloidogenic and all of these diseases have in common the expression of a protein outside its normal context. In all these diseases, protein aggregation can be caused by mere chance, by protein hyperphosphorylation, by mutations that make the protein unstable, or by an unregulated or pathological increase in the concentration of some of these proteins between cells. These imbalances in concentration can be caused by mutations of the amyloidogenic genes, changes in the amino acid sequence of the protein or by deficiencies in the proteasome.
Explanation: