Answer:
the formula of mechanical advantage is
MA = load / effort
VR = effort distance / load distance
hope it is helpful to you
We are given with the specific heat capacity of ethanol, the mass of the sample and the temperature change to determine the total amount of heat to raise the temperature. The formula to be followed is H = mCpΔT. Upon subsituting, H = 79 g * 2.42 J/gC *(385-298)C = 16.63 kJ
Changes. :) I think... Whats your question
?
Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is

where T= 200 N is tension in the string ,
=1.0 g/m is the linear mass density


Wavelength of the wave in the string is

The frequency is

The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)
