<em>"A concave lens is thinner at the center than it is at the edges."</em>
If this isn't on the list of choices, that's tough. We can't help you choose the best one if we don't know what any of them is.
Answer:
Bile helps in the digestion of fats
Answer:
The correct statements would be
- Cyanobacteria allowed organisms that rely on oxygen to evolve.
- Cyanobacteria preceded the first photosynthetic organisms.
- Cyanobacteria produced excess oxygen.
Cyanobacteria, also termed as blue-green algae are the prokaryotes which are able to perform photosynthesis.
They were the major contributors of oxygen in the atmosphere and thus helped the organisms that rely on oxygen to evolve.
By the process of endosymbiosis, they lead to the origin of plants. The chloroplasts present in green plants is considered as the cyanobacteria living in the plant cell. It helps in photosynthesis and in return plants cell provides shelter to it.
It is believed that the oxygen released from early cyanobacteria reacted with dissolved iron ions to form iron oxide.
Answer:
First option, third option, fourth option, and the fifth option.
Explanation:
Kinetic energy is energy an object has when it's motion, the greater the speed the greater the kinetic energy. For example, a car moving and increasing in speed is kinetic energy since the object is in motion. If the car stops and parks in a parking lot that is potential energy. Potential energy is the amount of energy an object has when it's at rest or not in motion.
So, the answer for this question is as followed first option or "energy can be stored in the position of an object." Third option or "Energy can be stored in the position of the particles that make up a substance." Fourth option or "Energy exists as movement of the particles of a substance." The last answer will be the fifth option or "Energy is greater in faster-moving particles than in slower-moving particles."
Hope this helps.
what is the final speed of the incoming ball if it is much more massive than the stationary ball? express your answer using two significant figures. v1 = 200 m / s submitprevious answers correct
Perfectly elastic collisions means that both mechanical energy and
momentum are conserved.
Therefore, for this case, we have the equation to find the final velocity of the incoming ball is given by
v1f = ((m1-m2) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v1f: final speed of ball 1.
m1: mass of the ball 1
m2: mass of the ball 2
Since the mass of the ball 1 is much larger than the mass of the ball 2 m1 >> m2, then rewriting the equation:
v1f = ((m1) / (m1) v1i
v1f = v1i
v1f = 200 m / s
answer
200 m / s
part b part complete what is the final direction of the incoming ball with respect to the initial direction if it is much more massive than the stationary ball? forward submitprevious answers correct
Using the equation of part a, we can include in it the directions:
v1fx = ((m1-m2) / (m1 + m2)) v1ix
v1i: initial velocity of ball 1 in the direction of the x-axis
v1f: final speed of ball 1 in the direction of the x-axis
like m1 >> m2 then
v1fx = v1ix
v1fx = 200 m / s (positive x direction)
So it is concluded that the ball 1 continues forward.
answer:
forward
part c part complete what is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball ?.
The shock is perfectly elastic. For this case, we have that the equation to find the final velocity of the stationary ball is given by
v2f = ((2m1) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v2f: final speed of ball 2.
m1: mass of the ball 1
m2: mass of the ball 2
Then, as we know that m1 >> m2 then
v2f = ((2m1) / (m1) v1i
v2f = 2 * v1i
v2f = 2 * (200 m / s)
v2f = 400 m / s
answer
400m / s