Answer:
The concentration of the solution is 1.364 molar.
Explanation:
Volume of perchloric acid = 29.1 mL
Mass of the solution = m
Density of the solution = 1.67 g/mL

Percentage of perchloric acid in 48.597 solution :70.5 %
Mass of perchloric acid in 48.597 solution :
= 
Moles of perchloric acid = 
In 29.1 mL of solution water is added and volume was changed to 250 mL.
So, volume of the final solution = 250 mL = 0.250 L (1 mL = 0.001 L)


The concentration of the solution is 1.364 molar.
The colour will be white
..........
<u>Answer:</u> The mass of water that should be added in 203.07 grams
<u>Explanation:</u>
To calculate the molality of solution, we use the equation:

Where,
m = molality of barium iodide solution = 0.175 m
= Given mass of solute (barium iodide) = 13.9 g
= Molar mass of solute (barium iodide) = 391.14 g/mol
= Mass of solvent (water) = ? g
Putting values in above equation, we get:

Hence, the mass of water that should be added in 203.07 grams
Answer: Option (c) is the correct answer.
Explanation:
It is known that when Gibb's free energy, that is,
has a negative value then the reaction will be spontaneous and the formation of products is favored more rapidly.
Activation energy is defined as the minimum amount of energy required to initiate a chemical reaction.
So, when reactants of a chemical reaction are unable to reach towards its activation energy then a catalyst is added to lower the activation energy barrier so the reaction can take place rapidly.
Since, the given reaction has low activation energy. Therefore, there is no need to add a catalyst.
And, when value of
is positive then the reaction is spontaneous in nature and formation of products is less favored.
Thus, we can conclude that for the given situation positive delta G is the reason that a reaction might form products very slowly, or not at all.
Basic unit of a chemical element or atoms as a source of nuclear energy
straight out of dictionary