Answer:
v=0.04m/s
Explanation:
To solve this problem we have to take into account the expression

where v and r are the magnitudes of the velocity and position vectors.
By calculating the magnitude of r and replacing w=0.02rad/s in the formula we have that

the maximum relative velocity is 0.04m/s
hope this helps!!
Answer
speed of the molecules
s₁ = v t
when velocity is doubled
s₂ = (2 v)t
= 2 s₁
they will hit the wall of container two times as often.
the momentum of molecule
p₁ = mvr
p₂ = m(2v)r = 2(mvr)
= 2 p₁
the momentum change is two times as great.
force is change in momentum
Δp = F(Δt)
mv-(-mv) = 2 mv

F α v
therefore average force impart to the wall on each collision is two times


p α v²
here the velocity is doubled it means pressure becomes four times.
Answer:
The total mechanical energy of a pendulum is conserved neglecting the friction.
Explanation:
- When a simple pendulum swings back and forth, it has some energy associated with its motion.
- The total energy of a simple pendulum in harmonic motion at any instant of time is equal to the sum of the potential and kinetic energy.
- The potential energy of the simple pendulum is given by P.E = mgh
- The kinetic energy of the simple pendulum is given by, K.E = 1/2mv²
- When the pendulum swings to one end, its velocity equals zero temporarily where the potential energy becomes maximum.
- When the pendulum reaches the vertical line, its velocity and kinetic energy become maximum.
- Hence, the total mechanical energy of a pendulum as it swings back and forth is conserved neglecting the resistance.
Explanation:
It is given that,
Electric field, 
We need to find the change in the electric potential energy of the proton-field system when the proton travels to x = 2.5 m
From the conservation of energy, the loss in potential energy is equal to the gain in kinetic energy and kinetic energy is is equal to the work done.




So, the change in electric potential energy of the proton field system is
. Hence, this is the required solution.