Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
Answer:
C
Explanation:
Static electricity is what makes your hair stand up when you rub a balloon against it or gives you a shock from your doorknob. In static electricity, electrons are moved around mechanically (i.e. by someone rubbing two things together).
HOPE THIS HELPED AND LETTER D MADE ME LAUGH
Explanation:
B.
dfgfafbbgsysyayaygwwusduhxh
duduusuwubbdysysdhvvduususu
Answer:
g ≈ 2.82 m/s^2
Explanation:
By W = mg,
W = weight (in newtons)
m = mass (in kg)
g = gravitational acceleration (in m/s^2)


g ≈ 2.82 m/s^2