1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
15

Why do planets not travel in a straight path?

Physics
1 answer:
Elis [28]3 years ago
6 0

Answer:

Because the gravitational attraction of the Sun hold them in motion around it

Explanation:

For an object travelling in a straight path at constant velocity, the net force acting on the object must be zero.

The planets in the Solar System, however, do not experience a zero net force: in fact, the Sun exerts a gravitational attraction on them, whose magnitude is given by

F=G\frac{Mm}{r^2}

where

G is the gravitational constant

M is the mass of the Sun

m is the mass of the planet

r is the average distance between the Sun and the planet

Due to the presence of this force, the Sun makes the planets 'deviating' from their straight path, forcing them to following an elliptical path around the Sun.

You might be interested in
If the magnitude of F1 is greater than the magnitude of F2, then the box is
Lady bird [3.3K]

Assuming that the vectors are acting along the same axis, we could just simply add or subtract the vectors. Since the F1 is greater than F2, there would be motion, there would be acceleration, and that the direction of motion is along the F1.

6 0
3 years ago
Read 2 more answers
Waves transport
Brilliant_brown [7]

Answer:

d)energy

Explanation:

Waves can transfer energy over distance without moving matter the entire distance. For example, an ocean wave can travel many kilometers without the water itself moving many kilometers. The water moves up and down—a motion known as a disturbance. It is the disturbance that travels in a wave, transferring energy.

5 0
2 years ago
In which region of the ear does resonance allow the brain to interpret sound answer
lakkis [162]
I'm not too sure what your asking but here are two answers that may help.
The ear drum amplifies the vibrations.
The cochlea changes vibrations into electric signals.
7 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
Why do different stars have different life cycles
lana66690 [7]
The answer is shape is determined. A stars life cycle is determined in its size
3 0
3 years ago
Other questions:
  • If we compare the force of gravity to strong nuclear force, we could conclude that A.gravity is the weaker force; it is related
    7·2 answers
  • The energy of a wave depends on its ___________. <br> Fill in the blank.
    15·1 answer
  • Punnet square to show a cross between two short-haired cats
    7·2 answers
  • Which of the following is an example of mechanical waves in nature?
    8·1 answer
  • Hillary is dropping objects that are the same volume. She wants to investigate how an object’s mass affects the average speed at
    5·1 answer
  • I have some balls I’m a girl
    7·1 answer
  • When applied behavior analysis is used properly what happens???​
    11·1 answer
  • 3. An airplane is heading north with an airspeed of 325 m/s with a wind from the east at 55.0 m/s. What is the airplane's veloci
    10·1 answer
  • What is the name of this atom? I
    14·2 answers
  • It is possible for an object in free fall to be moving:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!