Answer:
15 units.
Step-by-step explanation:
The distance between the points (x1, y1) and (x2, y2) is
√(x1-y1)^2 + (y1-y2)^2))
So here it is:
√(10- -2)^2 + (6- -3)^2)
= √(144+81)
= √225
= 15.
Remember that
If the given coordinates of the vertices and foci have the form (0,10) and (0,14)
then
the transverse axis is the y-axis
so
the equation is of the form
(y-k)^2/a^2-(x-h)^2/b^2=1
In this problem
center (h,k) is equal to (0,4)
(0,a-k)) is equal to (0,10)
a=10-4=6
(0,c-k) is equal to (0,14)
c=14-4=10
Find out the value of b
b^2=c^2-a^2
b^2=10^2-6^2
b^2=64
therefore
the equation is equal to
<h2>(y-4)^2/36-x^2/64=1</h2><h2>the answer is option A</h2>
Step-by-step explanation:
The formula the amusement parc use is 100y-39000=55(x-800)
The slope intercept form of a function is wriiten generally as:
y = mx+c
- m is a slope
- c is a constant and represents the y-intercept
- x is a variable
- y is the input of the function
Let's rewrite our equation in the precedent form
- 100y-39000 = 55(x-800)
- 100y -39000 = 55x-44000 add 39000 in both sides
- 100y-39000+39000 = 55x-44000+39000
- 100y = 55x-5000 divide both sides by 100
- y = 0.55x-50
The slope intercept form of this equation is:
y= 0.55x-50
Answer:
2592 cm
Step-by-step explanation:
square area = x²
rectangle area = bh
so
x² = bh
since the areas are equal
b and h are in the problem as 64 and 81
x² = 64x81
x² = 5184
divide by 2
x = 2592 cm
The result is the perpendicular bisector of AB, perpendicular to the segment AB, and through its midpoint.