Answer:
19.209 miles from each other.
Step-by-step explanation:

Using this we get:



Answer:
What YOUR PROBLEM
Step-by-step explanation:
Answer:
15 apples
Step-by-step explanation:
Answer:
The area of the region is 25,351
.
Step-by-step explanation:
The Fundamental Theorem of Calculus:<em> if </em>
<em> is a continuous function on </em>
<em>, then</em>

where
is an antiderivative of
.
A function
is an antiderivative of the function
if

The theorem relates differential and integral calculus, and tells us how we can find the area under a curve using antidifferentiation.
To find the area of the region between the graph of the function
and the x-axis on the interval [-6, 6] you must:
Apply the Fundamental Theorem of Calculus


