When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Volume = (4/3) × π × r^3
R = 1/2 D
R = 7
V = 4/3 x π x 7^3
Exact Form:
1372 π/ 3
Decimal Form:
1436.75504024
Answer: There is one way to write it but i’ll also provide an unbalanced equation and a balanced one.
Explanation:
Unbalanced : Ba (aq) + Cl2 (aq)—-> BaCl (aq)
Balanced : 2Ba (aq) + Cl2 (aq)—> 2BaCl(aq)
Answer:
CaCO3 exoskeleton dissolves in acidic water
Explanation:
The increasing CO2 level makes the ocean water acidic and hence reduces the pH. In such acidic environment, marine organism that produce calcium carbonate shells or skeletons are negatively affected. Coral reefs and coralline algae abilities to produce skeleton also reduces.
Calcium carbonate dissolves in acid. Thus, the more acidic the ocean water is the faster and easier it is to dissolve the exoskeleton and shell of marine organisms made up of calcium carbonate
I think the correct answers are X2Y and X3Y, X2Y5 and X3Y5, and X4Y2 and X3Y,
for the following reason:
If you look at the combining masses of X and Y in
each of the two compounds,
The first compound contains 0.25g of X combined with
0.75g of Y
so the ratio (by mass) of X to Y = 1 : 3
The second compound contains 0.33 g of X combined with
0.67 g of Y
so the ratio (by mass) of X to Y = 1 : 2
Now, you suppose to prepare each of these two
compounds, starting with the same fixed mass of element Y ( I will choose 12g
of Y for an easy calculation!)
The first compound will then contain 4g of X and 12g
of Y
The second compound will then contain 6g of X and
12g of Y
<span>The ratio which combined
the masses of X and the fixed mass (12g) of Y
= 4 : 6
<span>or 2 : 3 </span>
So, the ratio of MOLES of X which combined with the
fixed amount of Y in the two compounds is also = 2 : 3 </span>
The two compounds given with the plausible formula must therefore contain
the same ratio.