It’s the third one because Cl has 17 protons bc of the numeric number and 18 electrons bc it’s always the opposite and 18 neutrons because you subtract 35-17=18
Yes a red blood cell placed in a sline solution shrinks because of the process of osmosis.
<span>Answer:
For this problem, you would need to know the specific heat of water, that is, the amount of energy required to raise the temperature of 1 g of water by 1 degree C. The formula is q = c X m X delta T, where q is the specific heat of water, m is the mass and delta T is the change in temperature. If we look up the specific heat of water, we find it is 4.184 J/(g X degree C). The temperature of the water went up 20 degrees.
4.184 x 713 x 20.0 = 59700 J to 3 significant digits, or 59.7 kJ.
Now, that is the energy to form B2O3 from 1 gram of boron. If we want kJ/mole, we need to do a little more work.
To find the number of moles of Boron contained in 1 gram, we need to know the gram atomic mass of Boron, which is 10.811. Dividing 1 gram of boron by 10.811 gives us .0925 moles of boron. Since it takes 2 moles of boron to make 1 mole B2O3, we would divide the number of moles of boron by two to get the number of moles of B2O3.
.0925/2 = .0462 moles...so you would divide the energy in KJ by the number of moles to get KJ/mole. 59.7/.0462 = 1290 KJ/mole.</span>
Water levels tend to drop in dry weather because of evaporation. The hot temperatures will cause the water to achieve its gaseous state and go up into the atmosphere.
Answer: Molar concentration of the tree sap have to be 0.783 M
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
where,
= osmotic pressure of the solution = 19.6 atm
i = Van't hoff factor = 1 (for non-electrolytes)
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:


Thus the molar concentration of the tree sap have to be 0.783 M to achieve this pressure on a day when the temperature is 32°C