B. The unknown solution had the lower concentration.
Explanation:
Osmosis is a phenomenon in which the molecules of the solvent has a tendency to move through a membrane which is semipermeable from lower concentrated side to the higher concentration side, so that the concentrations on both sides of the membrane must be equal.
So the unknown solution may have lesser concentration than the isotonic solution so that molecules of that solution move from less concentrated side to the more concentrated side, so its level drops.
Sodium is a metal and bromine is a nonmetal so they form an ionic compound
nonmetals and nonmetals form covalent compounds
Answer:
The average atomic weight = 121.7598 amu
Explanation:
The average atomic weight of natural occurring antimony can be calculated as follows :
To calculate the average atomic mass the percentage abundance must be converted to decimal.
121 Sb has a percentage abundance of 57.21%, the decimal format will be
57.21/100 = 0.5721 . The value is the fractional abundance of 121 Sb .
123 Sb has a percentage abundance of 42.79%, the decimal format will be
42.79/100 = 0.4279. The value is the fractional abundance of 123 Sb .
Next step is multiplying the fractional abundance to it masses
121 Sb = 0.5721 × 120.904 = 69.169178400
123 Sb = 0.4279 × 122.904 = 52.590621600
The final step is adding the value to get the average atomic weight.
69.169178400 + 52.590621600 = 121.7598 amu
Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).
Its hydrogen atom is a high conductor of electricity