Answer:
We conclude that at x = 0 and x = -1, the value of f(x) = 2ˣ - 1 and g(x) = 1/2x is the same.
Therefore, the solution to f(x) = g(x) is:
Step-by-step explanation:
Given the table
x f(x) = 2ˣ - 1 g(x) = 1/2x
-2 -3/4 -1
-1 -1/2 -1/2
0 0 0
1 1 1/2
2 3 1
If we carefully observe, we can determine that
at x = 0, the value of f(x) = 2ˣ - 1 and g(x) = 1/2x is the same.
In other words,
at x = 0
Thus,
at x = 0
f(x) = g(x)
Also at x = -1, the value of f(x) = 2ˣ - 1 and g(x) = 1/2x is the same.
In other words,
at x = -1
Thus,
at x = -1
f(x) = g(x)
Summary:
Thus, we conclude that at x = 0 and x = -1, the value of f(x) = 2ˣ - 1 and g(x) = 1/2x is the same.
Therefore, the solution to f(x) = g(x) is:
Kilogram
decagram
gram
decigram
milligram
46200000000.
12000000000.
you just move the decimal 10 places to the right
The standard form of a quadratic equation is

, while the vertex form is:

, where (h, k) is the vertex of the parabola.
What we want is to write

as

First, we note that all the three terms have a factor of 3, so we factorize it and write:

.
Second, we notice that

are the terms produced by

, without the 9. So we can write:

, and substituting in

we have:
![\displaystyle{ y=3(x^2-6x-2)=3[(x-3)^2-9-2]=3[(x-3)^2-11]](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%20y%3D3%28x%5E2-6x-2%29%3D3%5B%28x-3%29%5E2-9-2%5D%3D3%5B%28x-3%29%5E2-11%5D)
.
Finally, distributing 3 over the two terms in the brackets we have:
![y=3[x-3]^2-33](https://tex.z-dn.net/?f=y%3D3%5Bx-3%5D%5E2-33)
.
Answer:
Answer:
790
Step-by-step explanation:
You put 5 instead of x and you calculat
6*5^3 +8*5= 750+40=790