Based on the weight and the model that is given, it should be noted that W(t) in radians will be W(t) = 0.9cos(2πt/366) + 8.2.
<h3>
How to calculate the radian.</h3>
From the information, W(t) = a cos(bt) + d. Firstly, calculate the phase shift, b. At t= 0, the dog is at maximum weight, so the cosine function is also at a maximum. The cosine function is not shifted, so b = 1.
Then calculate d. The dog's average weight is 8.2 kg, so the mid-line d = 8.2. W(t) = a cos t + 8.2. Then calculate a, the dog's maximum weight is 9.1 kg. The deviation from the average is 9.1 kg - 8.2 kg = 0.9 kg. W(t) = 0.9cost + 8.2
Lastly, calculate t. The period p = 2π/b = 2π/1 = 2π. The conversion factor is 1 da =2π/365 rad. Therefore, the function with t in radians is W(t) = 0.9cos(2πt/365) + 8.2.
Learn more about radians on:
brainly.com/question/12939121
A. 5
B. -3/1
C. Negative
D. You have to go down 3 over to the right one from where your y-intercept is.
To plot the y intercept plot (0,5)
To plot the next point go down 3 over 1 to the right from the y-ing
Answer:
The population of bacteria is increasing.
Step-by-step explanation:
The function modelling the population of bacteria in the given culture is an exponential function; We have a base 1.03 and an exponent t. An exponential function is said to be increasing if the base is strictly greater than 1, this implies that the population of the bacteria is increasing as t increases from 0 to infinity.