Answer: 1,365 possible special pizzas
Step-by-step explanation:
For the first topping, there are 15 possibilities, for the second topping, there are 14 possibilities, for the third topping, there are 13 possibilities, and for the fourth topping, there are 12 possibilities. This is how you find the number of possible ways.
15 * 14 * 13 * 12 = 32,760
Now, you need to divide that by the number of toppings you are allowed to add each time you add a topping.
4 * 3 * 2 * 1 = 24
32,760 / 24 = 1,365
There are 1,365 possible special pizzas
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
Answer:
∠3=95°
∠4=85°
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given


Required

This question is an illustration of binomial distribution where:

So, we have:


This gives


Expand




Answer:Y=16x+20
Step-by-step explanation:
Y=16x+20 thats tthe one that worked for me