Answer:
W = 47040 J
Explanation:
Given that,
The mass of a student, m = 60 kg
Height of the tower, h = 80 m
We need to find the work done in climbing the tower. The work done is given by :
W = mgh
So,
W = 60 × 9.8 × 80
W = 47040 J
So, the required work done is 47040 J.
Answer:
Orbital Time Period is 24 years
Explanation:
This can be explained by the definition of time period.
Time period can be defined as the time taken by an object to complete one cycle, here, time taken to complete one revolution.
Also, we know that an extra solar planet which is also called as an exo planet is that planet which is outside our solar system and orbits any star other than our sun. The system in consideration is extra solar system with a single planet.
Therefore, the time taken by the parent star to move about its mass center is the orbital time period that is 24 years.
Answer;
The mass value for the above kinetic energy equation is 400.0000 kg. This is equal to:
■ 400,000.0000 g.
■ 14,109.6000 ounces.
■ 881.8480 pounds.
Models show how the atoms in a compound are connected.
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you