<u>Answer:
</u>
Distance traveled = 70 meters
Displacement = 36.06 meters
<u>Explanation:
</u>
Let north be positive Y and east be positive X
10 meters north, displacement = 10 j meters
20 meters west, displacement = -20 i meters
40 meters south, displacement = -40 j meters
Total displacement = (10 j - 20 i – 40 j) meters = (- 20 i - 30 j) meters
Magnitude of displacement =
Distance traveled = 10+20+40 = 70 meters
The answer is the last option "Respiration"
Answer:
Vi = 32 [m/s]
Explanation:
In order to solve this problem we must use the following the two following kinematics equations.

The negative sign of the second term of the equation means that the velocity decreases, as indicated in the problem.
where:
Vf = final velocity = 8[m/s]
Vi = initial velocity [m/s]
a = acceleration = [m/s^2]
t = time = 5 [s]
Now replacing:
8 = Vi - 5*a
Vi = (8 + 5*a)
As we can see we have two unknowns the initial velocity and the acceleration, so we must use a second kinematics equation.

where:
d = distance = 100[m]
(8^2) = (8 + 5*a)^2 - (2*a*100)
64 = (64 + 80*a + 25*a^2) - 200*a
0 = 80*a - 200*a + 25*a^2
0 = - 120*a + 25*a^2
0 = 25*a(a - 4.8)
therefore:
a = 0 or a = 4.8 [m/s^2]
We choose the value of 4.8 as the acceleration value, since the zero value would not apply.
Returning to the first equation:
8 = Vi - (4.8*5)
Vi = 32 [m/s]
Can u show the whole question plz
Answer:
16250 kgm/s due south
Explanation:
Applying,
M = mv................. Equation 1
Where M = momentum, m = mass, v = velocity.
From the car,
Given: m = 1000 kg, v = 6.5 m/s
Substitute these values into equation 1
M = 1000(6.5)
M = 6500 kgm/s
For the truck,
Given: m = 3500 kg, v = 6.5 m/s
Substitute these values into equation 1
M' = 3500(6.5)
M' = 22750 kgm/s.
Assuming South to be negative direction,
From the question,
Total momentum of the two vehicles = (6500-22750)
Total momentum of the two vehicles = -16250 kgm/s
Hence the total momentum of the two vehicles is 16250 kgm/s due south