Step-by-step explanation:
Let us consider the task to find the angle between vectors ES and EJ (the first letters are taken to name the vectors).
\overrightarrow{ES} = (4;4) - (4; -3) = \overrightarrow{(0; 7)}
ES
=(4;4)−(4;−3)=
(0;7)
\overrightarrow{EJ} = (-5; -4) - (4; -3) = \overrightarrow{(-9; -1)}
EJ
=(−5;−4)−(4;−3)=
(−9;−1)
cos \alpha=\frac{\overrightarrow{ES}*\overrightarrow{EJ}}{|\overrightarrow{EJ}|*|\overrightarrow{ES}|}cosα=
∣
EJ
∣∗∣
ES
∣
ES
∗
EJ
cos(a) = (0*(-9)+7*(-1)) / (7*9.055) = -0.11043;
a = 96,34°
Solution: 96 degrees.
Answer:
27
Step-by-step explanation:
20=v-7
v=20+7
v=27
Hence, v equals to 27
CoComo no sabía que esto era la única cosa que trabajo perro
The answer is 115.2 because you only multiply
Answer:
To find area of the quadrilateral ABCD, now we have take the vertices A(x1, y1), B(x2, y2), C(x3, y3) and D(x4, y4) of the quadrilateral ABCD in order (counter clockwise direction) and write them column-wise as shown below. Add the diagonal products x1y2, x2y3, x3y4 and x4y1 are shown in the dark arrows.
Step-by-step explanation: