Answer:
this is a simple application of Newton's 2nd Law: F = ma.
F = 0.023(25)
So,
F =0.575 N.
Therefore
The answer is A.
If rounded up/off.
Explanation:
HOPE IT HELPS.
PLEASE MARK AS BRAINLIEST.
Answer:
His final velocity is 15.8 m/s.
Step-by-step explanation:
Given:
Initial velocity of the driver is,
m/s
Acceleration of the driver is,
m/s²
Time taken to reach final velocity is,
s.
The final velocity is given using the Newton's equations of motion as:
, where,
is the final velocity.
Now, plug in the given values and solve for
.

Therefore, his final velocity is 15.8 m/s.
Answer:
Final Speed of Dwayne 'The Rock' Johnson = 15.812 m/s
Explanation:
Let's start out with finding the force acting downwards because of the mass of 'The Rock':
Dwayne 'The Rock' Johnson: 118kg x 9.81m/s = 1157.58 N
Now the problem also states that the kinetic friction of the desk in this problem is 370 N
Since the pulley is smooth, the weight of Dwayne Johnson being transferred fully, and pulls the desk with a force of 1157.58 N. The frictional force of the desk is resisting this motion by a force of 370 N. Subtracting both forces we get the resultant force on the desk to be: 1157.58 - 370 = 787.58 N
Now lets use F = ma to calculate for the acceleration of the desk:
787.58 = 63 x acceleration
acceleration = 12.501 m/s
Finally, we can use the motion equation:

here u = 0 m/s (since initial speed of the desk is 0)
a = 12.501 m/s
and s = 10 m
Solving this we get:


Since the desk and Mr. Dwayne Johnson are connected by a taught rope, they are travelling at the same speed. Thus, Dwayne also travels at 15.812 m/s when the desk reaches the window.
Answer:
intensity.
Explanation:
when the light collected by the lens is focused into a small spot it tends to increase the intensity of the light.
as different path of light with different intensity combines from passing through the lens it tends to make the light path and intensity coherent and after being coherent there intensity increases.
Answer:
λ = 102.78 nm
This radiation is in the UV range,
Explanation:
Bohr's atomic model for the hydrogen atom states that the energy is
E = - 13.606 / n²
where 13.606 eV is the ground state energy and n is an integer
an atom transition is the jump of an electron from an initial state to a final state of lesser emergy
ΔE = 13.606 (1 /
- 1 / n_{i}^{2})
the so-called Lyman series occurs when the final state nf = 1, so the second line occurs when ni = 3, let's calculate the energy of the emitted photon
DE = 13.606 (1/1 - 1/3²)
DE = 12.094 eV
let's reduce the energy to the SI system
DE = 12.094 eV (1.6 10⁻¹⁹ J / 1 ev) = 10.35 10⁻¹⁹ J
let's find the wavelength is this energy, let's use Planck's equation to find the frequency
E = h f
f = E / h
f = 19.35 10⁻¹⁹ / 6.63 10⁻³⁴
f = 2.9186 10¹⁵ Hz
now we can look up the wavelength
c = λ f
λ = c / f
λ = 3 10⁸ / 2.9186 10¹⁵
λ = 1.0278 10⁻⁷ m
let's reduce to nm
λ = 102.78 nm
This radiation is in the UV range, which occurs for wavelengths less than 400 nm.