Answer:

Explanation:
Atomic number : It is defined as the number of electrons or number of protons present in a neutral atom.
However, when we talk about the atomic number of the ion, it is not equal to the number of electrons as electron can be gained or loosed.
This is why, more appropriately, the number of the protons which are present in the nucleus of the atom is called the atomic number.
Thus, atomic number of phosphorus = 15
Mass number is the number of the entities present in the nucleus which is the equal to the sum of the number of protons and electrons.
Given, Mass number = 32
Thus, the symbol of the isotope is:-

Answer:
Explanation:
Given that:

From above:

To predict the effect of the addition of Br₂(g);
The addition of Br₂(g) will favor the equilibrium to shift to the left i.e. formation of NOBr
The removal of some NOBr will cause the equilibrium position to shift to the left side. This is because concentration on the left side is decreased and the concentration on the right side will be increased. Thus, the equilibrium will shift towards where the concentration is reduced which is the left side.
<span>The composition of a fertilizer is usually express in NPK number. NPK number is in terms of Percent by mass of the said element which are Nitrogen, Phosphorus and Potassium. A 15-35-15 fertilizer has 15%
Nitrogen, 35% Phosphorous, and 15% Potassium by mass. If you have 10 g of this
fertilizer, to get the number of moles of phosphorus, you multiply the mass by
35%, which is equal to 10*0.35 or 3.5 g phosphorus. Then you divide the
calculated mass of phosphorous by its molar mass which is 30.97 g/mol.
Therefore, you have 3.5/30.97 which is equal to 0.1130 mol Phosphorus. This is the amount of Phosphorus in moles in the fertilizer.</span>
Answer:
This is the temperature indicated by a moistened thermometer bulb exposed to the air flow. The evaporation is reduced when the air contains more water vapor. The wet bulb temperature is always lower than the dry bulb temperature but will be identical with 100% relative humidity.
Explanation: