Answer:
0.00011 JK.
The process does NOT violate the second law of thermodynamics
Explanation:
The following parameters are given which are going to help in solving for the change in entropy of the system. The term "entropy'' simply means the degree of disorderliness of a system.
=> The temperature of container A = 305 K, the temperature of container B = 295 K and the amount of heat generated when the containers are placed in contact with each other = 1. 1 J.
The change in entropy of the hot container = -(1/305) = - 0.00328 J/K.
The change in entropy of the cold container = 1/295 = 0.00339 J/K.
Therefore, the change in the entropy of the system = - 0.00328 J/K + 0.00339 J/K = 0.00011 JK.
Note that the change in entropy of the system gives a positive value. Hence, this process does not violate the second law of thermodynamics.
The process does NOT violate the second law of thermodynamics.
Explanation:
A synthesis reaction: It is defined as a kind of reaction where one and more than one reactant attached and creates an individual product.
The formation of the water is an example of a synthesis reaction because here more than one reactants combine and create a single product (water). Water formation occurs when 2 hydrogens and an oxygen share electrons through covalent bonds.
2H + O ----> H2O.
Answer:
The answer is Frost Point.
Explanation:
The temperature to which the air must be cooled, with constant pressure, to reach saturation (in relation to liquid water), is called the dew point. The dew point gives a measure of the water vapor content in the air. The higher, the greater the concentration of water vapor in the air. However, when cooling produces saturation at a temperature of 0 ° C or less, the temperature is called a frost point. The water vapor is deposited as frost on a surface whose temperature is below the dew point.
Answer:
Since KOH is a strong base, the solution completely ionizes into K+ and OH- when in water. The reaction KOH --> K+ + OH- takes place. The concentration of [ OH- ] can then be used to calculate the pOH of the solution. pH = 14 - pOH = 14 - 1.48 = 12.52
Explanation:
Answer:
An additional advantage of asexual reproduction is that colonization of new habitats may be easier when an individual does not need to find a mate to reproduce. During sexual reproduction the genetic material of two individuals is combined to produce genetically diverse offspring that differ from their parents.
Explanation:
An organism has many benefits for having the ability to reproduce both sexually and asexually. The first of these benefits is that it doesn't have to find a mate in order to reproduce, so it can create offspring by itself, and enable the continuation of its' species.
If you need more help on this subject, don't be afraid to ask me. I'm willing to help.