The answer would be D. 32
Why? The triangle in the problem is an isosceles triangle. That means the two legs of the triangle are equal and the angle opposite to the equal legs are also equal.
Therefore, angle C is also 74°.
The sum of the interior angles of a triangle is equal to 180°.
Thus,
180° = ∡A + ∡B + ∡C
180° = 74° + ∡B + 74°
180° = 148° + ∡B
∡B = 180° - 148°
∡B = 32°
<span>3(x-4)= -5
Multiply 3 by x and -4
3x-12= -5
Add 12 to both sides
3x= 7
Divide 3 on both sides
Final Answer: 7/3 or 2 1/3
</span>
![\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = 4\frac{2}{3}x\qquad \qquad yes\qquad \checkmark\qquad \qquad k = 4\frac{2}{3} \\\\[-0.35em] ~\dotfill\\\\ y=3(x-1)\implies \stackrel{\textit{distributing}}{y=3x-3}\qquad \qquad yes\qquad \checkmark \qquad \qquad k=3](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bdirect%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20directly%20with%20%5Cunderline%7Bx%7D%7D%5Cqquad%20%5Cqquad%20y%3Dkx%5Cimpliedby%20%5Cbegin%7Barray%7D%7Bllll%7D%20k%3Dconstant%5C%20of%5C%5C%20%5Cqquad%20variation%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%204%5Cfrac%7B2%7D%7B3%7Dx%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%5Cqquad%20%5Cqquad%20k%20%3D%204%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%28x-1%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bdistributing%7D%7D%7By%3D3x-3%7D%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%20%5Cqquad%20%5Cqquad%20k%3D3)
bear in mind that, direct proportional equations have a y-intercept.
for y = kx, is pretty much y = kx + 0, where 0 = y-intercept.
and the "k" constant of proportionality, is pretty much just its slope.
No, there are lots of quadrilaterals. <span>Examples of other quadrilaterals
are rhombus, kite, trapezoid, parallelogram etc</span>