<h3>
Answer: 14x - 8</h3>
=======================================================
Explanation:
I'll use the quadratic formula to find the roots or x intercepts. This slight detour allows us to factor without having to use guess-and-check methods.
The equation is of the form ax^2+bx+c = 0
This leads to...
![x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}\\\\x = \frac{-(-11)\pm\sqrt{(-11)^2-4(12)(-5)}}{2(12)}\\\\x = \frac{11\pm\sqrt{361}}{24}\\\\x = \frac{11\pm19}{24}\\\\x = \frac{11+19}{24} \ \text{ or } \ x = \frac{11-19}{24}\\\\x = \frac{30}{24} \ \text{ or } \ x = \frac{-8}{24}\\\\x = \frac{5}{4} \ \text{ or } \ x = -\frac{1}{3}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%5Cpm%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B-%28-11%29%5Cpm%5Csqrt%7B%28-11%29%5E2-4%2812%29%28-5%29%7D%7D%7B2%2812%29%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B11%5Cpm%5Csqrt%7B361%7D%7D%7B24%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B11%5Cpm19%7D%7B24%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B11%2B19%7D%7B24%7D%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20%5Cfrac%7B11-19%7D%7B24%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B30%7D%7B24%7D%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20%5Cfrac%7B-8%7D%7B24%7D%5C%5C%5C%5Cx%20%3D%20%5Cfrac%7B5%7D%7B4%7D%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20-%5Cfrac%7B1%7D%7B3%7D)
Now use those roots to form these steps
![x = \frac{5}{4} \ \text{ or } \ x = -\frac{1}{3}\\\\4x = 5 \ \text{ or } \ 3x = -1\\\\4x - 5 =0 \ \text{ or } \ 3x+1 = 0\\\\(4x-5)(3x+1) = 0](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B5%7D%7B4%7D%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%20x%20%3D%20-%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5C4x%20%3D%205%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%203x%20%3D%20-1%5C%5C%5C%5C4x%20-%205%20%3D0%20%5C%20%5Ctext%7B%20or%20%7D%20%5C%203x%2B1%20%3D%200%5C%5C%5C%5C%284x-5%29%283x%2B1%29%20%3D%200)
Refer to the zero product property for more info.
Therefore, the original expression factors fully to (4x-5)(3x+1)
Use the FOIL rule to expand it out and you should get 12x^2-11x-5 again.
----------------------------------------------
We did that factoring so we could find the side lengths of the rectangle.
I'm using the fact that area = length*width
- L = length = 4x-5
- W = width = 3x+1
The order of length and width doesn't matter.
From here, we can then compute the perimeter of the rectangle
P = 2(L+W)
P = 2(4x-5+3x+1)
P = 2(7x-4)
P = 14x - 8
The second one should be the answer
Answer:
Image below
Step-by-step explanation:
<em>Given: Side lengths of a right triangle 3,4 and 5 units.
</em>
<em>
To draw: A right triangle with the given side length.
</em>
<em>
Solution:
</em>
<em>
We know, in a right angle triangle hypotenuse is the longest side and satisfying Pythagoras theorem.
</em>
<em>
From the given side length,
</em>
<em>
Hypotenuse = 5 unit
</em>
<em>
We can take any of the base and perpendicular.
</em>
<em>
Let, Base = 3 unit
</em>
<em>
Perpendicular = 4 unit.
</em>
<em>
It a right-angle triangle with a hypotenuse 5 unit.
</em>
<em>
Now we draw a right angle triangle taking in the first 3 base and 4 perpendicular and second 3 perpendicular and 4 bases.</em>
Answer:
you can just type out like 30 degrees, 50 degrees, and 100 degrees or something like that
Step-by-step explanation:
The answer is a I think that is correct