The cotangent function is defined as the ratio between cosine and sine of a given angle, i.e.

Since you can't have zero at the denominator, the cotangent function is not defined when the sine is zero.
Let's look at your option:
, so the cotangent is defined here
, so the cotangent is not defined here
, so the cotangent is defined here
, so the cotangent is defined here
Answer:
Option D (r(t) = 3.50t +25
; r(8) = 53)
Step-by-step explanation:
The fixed cost to rent the kayak $25. This is the cost which remains fixed irrespective of the usage of the kayak. The variable cost of using the kayak is the cost which depends on the usage of the kayak. It is mentioned that the kayak is used for 4 hours and the company charges $3.5 for every half hour. The cost function is given by:
r(t) = 25 + 3.5t ; there r is the total cost of using the kayak and t is the number of half-hours the kayak is used.
4 hours means that there are 8 half-hours. Therefore, t=8. Put t=8 in r(t).
r(8) = 25 + 3.5*(8) = 25 + 28 = 53.
Therefore, Option D is the correct answer!!!
Answer:
7(6m - 4) = -364
multiply 7 for both variables in the parenthesis
42m - 28 = -364
move 28 to other side
42m= -336
divide 42 on both sides
m= -8
Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL
Tems11 [23]
Answer:
Yes they are
Step-by-step explanation:
In the triangle JKL, the sides can be calculated as following:
=> JK = 
=> JL = 
=> KL = 
In the triangle QNP, the sides can be calculate as following:
=> QN = ![\sqrt{[-3-(-4)]^{2} + (0-4)^{2} } = \sqrt{1^{2}+(-4)^{2} } = \sqrt{1+16}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-3-%28-4%29%5D%5E%7B2%7D%20%2B%20%280-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%5E%7B2%7D%2B%28-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B1%2B16%7D%3D%5Csqrt%7B17%7D)
=> QP = ![\sqrt{[-7-(-4)]^{2} + (1-4)^{2} } = \sqrt{(-3)^{2}+(-3)^{2} } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-4%29%5D%5E%7B2%7D%20%2B%20%281-4%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-3%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B9%2B9%7D%3D%5Csqrt%7B18%7D%20%3D%203%5Csqrt%7B2%7D)
=> NP = ![\sqrt{[-7-(-3)]^{2} + (1-0)^{2} } = \sqrt{(-4)^{2}+1^{2} } = \sqrt{16+1}=\sqrt{17}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B-7-%28-3%29%5D%5E%7B2%7D%20%2B%20%281-0%29%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B%28-4%29%5E%7B2%7D%2B1%5E%7B2%7D%20%20%7D%20%3D%20%5Csqrt%7B16%2B1%7D%3D%5Csqrt%7B17%7D)
It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP
=> They are congruent triangles
Answer:
yaaa
Step-by-step explanation: