Energy is not created and not destroyed it will only change form
So heres your answer ; It is given off as other forms of energy/light and heat !!
=answer 2nd one
Answer:i think that the answer is 2 because bullfrogs and racoons can hear sounds under 100hz
Explanation:
i REALLY HOPE you get this DUB
Answer:
When the ball is held motionless above the floor, the ball possesses only GPE energy.If the ball is dropped, its GPE energy decreases as it falls.If the ball is dropped, its KE energy increases as it falls.
Explanation:
If the ball is held motionless, then its kinetic energy is equal to zero, since kinetic energy depends on the velocity. And the ball is held above the ground, which means it possesses gravitational potential energy.
If the ball is dropped, its height will decrease, therefore its gravitational potential energy will decrease. Along the way, the ball will be in free fall, and therefore its velocity will increase, hence its kinetic energy.

Yes ... the law of reflection states that the angle of incidence is equal to the angle of reflection <em /><em>
it also states that the incident ray reflected ray and the normal at the point of incidence lie on the same plane....;
</em>
Answer:
a) T = (2,375 ± 0.008) s
, b) When comparing this interval with the experimental value we see that it is within the possible theoretical values.
Explanation:
a) The period of a simple pendulum is
T = 2π √ L / g
Let's calculate
T = 2π √1.40 / 9.8
T = 2.3748 s
The uncertainty of the period is
ΔT = dT / dL ΔL
ΔT = 2π ½ √g/L 1/g ΔL
ΔT = π/g √g/L ΔL
ΔT = π/9.8 √9.8/1.4 0.01
ΔT = 0.008 s
The result for the period is
T = (2,375 ± 0.008) s
b) the experimental measure was T = 2.39 s ± 0.01 s
The theoretical value is comprised in a range of [2,367, 2,387] when we approximate this measure according to the significant figures the interval remains [2,37, 2,39].
When comparing this interval with the experimental value we see that it is within the possible theoretical values.