The weight of an object is taken to be the force on the object due to gravity. The weight ( W ) is the product of the mass ( m ) of the object and the magnitude of the gravitational acceleration ( g ).
On Earth: g = 9.81 m/s²
m = 20 kg
W = m · g = 20 kg · 9.81 m/s² = 196.2 N
Thunder is evidence of electric fields in the atmosphere.
The charge difference between the clouds and earth can be described as parallel conducting plates that produce electric fields in the atmosphere.
could be true
Answer:
1.35×10⁻⁷ m
37.278 mi/My
Explanation:
Speed of the tectonic plate= 6 cm/yr
Converting to seconds

So in one second it will move

In 71 seconds

The tectonic plate will move 1.35×10⁻⁵ cm or 1.35×10⁻⁷ m
Convert to mi/My
1 cm = 6.213×10⁻⁶ mi
1 M = 10⁶ years

Speed of the tectonic plate is 37.278 mi/My
Answer: 0.258 N
Explanation:
As the density of the object is much less than the density of water, it’s clear that the buoyant force, is greater than the weight of the object, which means that in normal conditions, it would float in water.
So, in order to get the ball submerged in water, we need to add a downward force, that add to the weight, in order to compensate the buoyant force, as follows:
F = Fb – Fg
Fb= δH20* 4/3*π*(d/2)³ * g
Fg = δb* 4/3*π*(d/2)³ *g
F= (δH20- δb) * 4/3*π*(d/2)³*g
Replacing by the values of the densities, and the ball diameter, we finally get:
F= 0.258 N
Answer:
r = 20 m
Explanation:
The formula for the angular momentum of a rotating body is given as:
L = mvr
where,
L = Angular Momentum = 10000 kgm²/s
m = mass
v = speed = 2 m/s
r = radius of merry-go-round
Therefore,
10000 kg.m²/s = mr(2 m/s)
m r = (10000 kg.m²/s)/(2 m/s)
m r = 5000 kg.m ------------- equation 1
Now, the moment of inertia of a solid uniform disc about its axis through its center is given as:
I = (1/2) m r²
where,
I = moment of inertia = 50000 kg.m²
Therefore,
50000 kg.m² = (1/2)(m r)(r)
using equation 1, we get:
50000 kg.m² = (1/2)(5000 kg.m)(r)
(50000 kg.m²)/(2500 kg.m) = r
<u>r = 20 m</u>