Answer:
The answer is 20.
Step-by-step explanation:
Answer:
x = 1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define Equation</u>
3(4x - 5) - 4x + 1 = -6
<u>Step 2: Solve for </u><em><u>x</u></em>
- Distribute 3: 12x - 15 - 4x + 1 = -6
- Combine like terms: 8x - 14 = -6
- Isolate <em>x</em> term: 8x = 8
- Isolate <em>x</em>: x = 1
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 3(4(1) - 5) - 4(1) + 1 = -6
- Multiply: 3(4 - 5) - 4 + 1 = -6
- Subtract: 3(-1) - 4 + 1 = -6
- Multiply: -3 - 4 + 1 = -6
- Subtract: -7 + 1 = -6
- Add: -6 = -6
Here we see that -6 does indeed equal -6.
∴ x = 1 is the solution to the equation.
3.) An extreme value refers to a point on the graph that is possibly a maximum or minimum. At these points, the instantaneous rate of change (slope) of the graph is 0 because the line tangent to the point is horizontal. We can find the rate of change by taking the derivative of the function.
y' = 2ax + b
Now that we where the derivative, we can set it equal to 0.
2ax + b = 0
We also know that at the extreme value, x = -1/2. We can plug that in as well.

The 2 and one-half cancel each other out.


Now we know that a and b are the same number, and that ax^2 + bx + 10 = 0 at x = -1/2. So let's plug -1/2 in for x in the original function, and solve for a/b.
a(-0.5)^2 + a(-0.5) + 10 = 0
0.25a - 0.5a + 10 = 0
-0.25a = -10
a = 40
b = 40
To determine if the extrema is a minima or maxima, we need to go back to the derivative and plug in a/b.
80x + 40
Our critical number is x = -1/2. We need to plug a number that is less than -1/2 and a number that is greater than -1/2 into the derivative.
LESS THAN:
80(-1) + 40 = -40
GREATER THAN:
80(0) + 40 = 40
The rate of change of the graph changes from negative to positive at x = -1/2, therefore the extreme value is a minimum.
4.) If the quadratic function is symmetrical about x = 3, that means that the minimum or maximum must be at x = 3.
y' = 2ax + 1
2a(3) + 1 = 0
6a = -1
a = -1/6
So now plug the a value and x=3 into the original function to find the extreme value.
(-1/6)(3)^2 + 3 + 3 = 4.5
The extreme value is 4.5
Let Angle A = X
Since Angle B is the same, angle B is also X
Then angle C = X +45
Add the 3 angles together: X +X +X +45 = 3x+45
That equals 180 degrees:
3x+45 = 180
Subtract 45 from both sides:
3x = 135
Divide both sides by 3:
X = 135/3
X = 45
Angle A = 45
Angle B = 45
Angle C = 45+45 = 90
Bru are u serious ? it’s C 7 x the parable equates with the equinox of traversal is 36/5