1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
6

An infinite sheet of charge, oriented perpendicular to the x-axis, passes through x = 0. It has a surface charge density σ1 = -2

.5 μC/m2. A thick, infinite conducting slab, also oriented perpendicular to the x-axis occupiees the region between a = 2.9 cm and b = 4 cm. The conducting slab has a net charge per unit area of σ2 = 64 μC/m2.
1) What is Ex(P), the value of the x-component of the electric field at point P, located a distance 6.6 cm from the infinite sheet of charge? N/C

2) What is Ey(P), the value of the y-component of the electric field at point P, located a distance 6.6 cm from the infinite sheet of charge? N/C

3) What is Ex(R), the value of the x-component of the electric field at point R, located a distance 1.45 cm from the infinite sheet of charge? N/C

4) What is Ey(R), the value of the y-component of the electric field at point R, located a distance 1.45 cm from the infinite sheet of charge? N/C

5) What is σb, the charge per unit area on the surface of the slab located at x = 4 cm? μC/m2

6) What is Ex, the value of the x-component of the electric field at a point on the x-axis located at x = 3.34 cm ? N/C

7) What is σa, the charge per unit area on the surface of the slab located at x = 2.9 cm? μC/m2

8) Where along the x-axis is the magnitude of the electric field equal to zero?

x < 0

0 < x < 2.9 cm

x > 4 cm

none of these regions
Physics
1 answer:
docker41 [41]3 years ago
8 0

1) At x = 6.6 cm,  E_x=3.47\cdot 10^6 N/C

2) At x = 6.6 cm, E_y=0

3) At x = 1.45 cm, E_x=-3.76\cdot 10^6N/C

4) At x = 1.45 cm, E_y=0

5) Surface charge density at b = 4 cm: +62.75 \mu C/m^2

6) At x = 3.34 cm, the x-component of the electric field is zero

7) Surface charge density at a = 2.9 cm: +65.25 \mu C/m^2

8) None of these regions

Explanation:

1)

The electric field of an infinite sheet of charge is perpendicular to the sheet:

E=\frac{\sigma}{2\epsilon_0}

where

\sigma is the surface charge density

\epsilon_0=8.85\cdot 10^{-12}F/m is the vacuum permittivity

The field produced by a thick slab, outside the slab itself, is the same as an infinite sheet.

So, the electric field at x = 6.6 cm (which is on the right of both the sheet and the slab) is the superposition of the fields produced by the sheet and by the slab:

E=E_1+E_2=\frac{\sigma_1}{2\epsilon_0}+\frac{\sigma_2}{2\epsilon_0}

where

\sigma_1=-2.5\mu C/m^2 = -2.5\cdot 10^{-6}C/m^2\\\sigma_2=64 \muC/m^2 = 64\cdot 10^{-6}C/m^2

The field of the sheet is to the left (negative charge, inward field), while the field of the slab is the right (positive charge, outward field).

So,

E=\frac{1}{2\epsilon_0}(\sigma_1+\sigma_2)=\frac{1}{2(8.85\cdot 10^{-12})}(-2.5\cdot 10^{-6}+64\cdot 10^{-6})=3.47\cdot 10^6 N/C

And the negative sign indicates that the direction is to the right.

2)

We note that the field produced both by the sheet and by the slab is perpendicular to the sheet and the slab: so it is directed along the x-direction (no component along the y-direction).

So the total field along the y-direction is zero.

This is a consequence of the fact that both the sheet and the slab are infinite along the y-axis. This means that if we take a random point along the x-axis, the y-component of the field generated by an element of surface dS of the sheet (or the slab), dE_y, is equal and opposite to the y-component of the field generated by an element of surface dS of the sheet located at exactly on the opposite side with respect to the x-axis, -dE_y. Therefore, the net field along the y-direction is always zero.

3)

Here it is similar to part 1), but this time the point is located at

x = 1.45 cm

so between the sheet and the slab. This means that both the fields of the sheet and of the slab are to the left, because the slab is negatively charged (so the field is outward). Therefore, the total field is

E=E_1-E_2

Substituting the same expressions of part 1), we find

E=\frac{1}{2\epsilon_0}(\sigma_1-\sigma_2)=\frac{1}{2(8.85\cdot 10^{-12})}(-2.5\cdot 10^{-6}-64\cdot 10^{-6})=-3.76\cdot 10^6N/C

where the negative sign indicates that the direction is to the left.

4)

This part is similar to part 2). Since the field is always perpendicular to the slab and the sheet, it has no component along the y-axis, therefore the y-component of the electric field is zero.

5)

Here we note that the slab is conductive: this means that the charges in the slab are free to move.

We note that the net charge on the slab is positive: this means that there is an excess of positive charge overall. Also, since the sheet (on the left of the slab) is negatively charged, the positive charges migrate to the left end of the slab (at a = 2.9 cm) while the negative charges migrate to the right end (at b = 4 cm).

The net charge per unit area of the slab is

\sigma=+64\mu C/m^2

And this the average of the surface charge density on both sides of the slab, a and b:

\sigma=\frac{\sigma_a+\sigma_b}{2} (1)

Also, the infinite sheet located at x = 0, which has a negative charge \sigma_1=-2.5\mu C/m^2, induces an opposite net charge on the left surface of the slab, so

\sigma_a-\sigma_b = +2.5 \mu C/m^2 (2)

Now we have two equations (1) and (2), so we can solve to find the surface charge densities on a and b, and we find:

\sigma_a = +65.25 \mu C/m^2\\\sigma_b = +62.75 \mu C/m^2

6)

Here we want to calculate the value of the x-component of the electric field at

x = 3.34 cm

We notice that this point is located inside the slab, because its edges are at

a = 2.9 cm

b = 4.0 cm

But slab is conducting , and the electric field inside a conductor is always zero (because the charges are in equilibrium): therefore, this means that the x-component of the electric field inside the slab is zero

7)

We  calculated the value of the charge per unit area on the surface of the slab at x = a = 2.9 cm in part 5), and it is \sigma_a = +65.25 \mu C/m^2

8)

As we said in part 6), the electric field inside a conductor is always zero. Since the slab in this problem is conducting, this means that the electric field inside the slab is zero: therefore, the regions where the field is zero is

2.9 cm < x < 4 cm

So the correct answer is

"none of these region"

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
As time goes on, the ENTROPY in a closed system should increase. This is because of which Law?
olga_2 [115]

Answer:

The answer is D

The second law of thermodynamics

5 0
3 years ago
Light year is a unit of?
IrinaVladis [17]
Light year is the unit of distance. It is the distance that an object travels in one year with the speed of light.

In short, Your Answer would be "Distance"

Hope this helps!
3 0
3 years ago
A _______ is a repeating disturbance or vibration that transfers or moves energy from place to place without transporting mass.
cupoosta [38]

the answer is a wave


7 0
4 years ago
Read 2 more answers
Which material is not a fluid? water cork gasoline air
Step2247 [10]

Answer:

Cork

Explanation:

Cork is a solid, other ones are fluid.

3 0
3 years ago
Read 2 more answers
Sunitha can type 1800 words in half an hour. What is her typing speed in words per minute?
Andre45 [30]

Answer:

60words/minute

Explanation:

If Sunitha can type 1800 words in half an hour, this can be expressed as;

1800 words = 30 minutes

To get her typing speed per minute, we will use the formula

Speed = Number of words/Time used

Typing speed = 1800/30

Typing speed = 60words/minute

Hence her typing speed in words per minute is 60words/minute

6 0
3 years ago
Other questions:
  • Fusion is a type of _____.
    13·1 answer
  • A(n) 71.1 kg astronaut becomes separated from the shuttle, while on a space walk. She finds herself 70.2 m away from the shuttle
    15·1 answer
  • Select True or False for the follwing statements about electric field lines.
    5·1 answer
  • (a) Calculate the wavelength of light in vacuum that has a frequency of 5.25 x 1018 Hz. nm (b) What is its wavelength in diamond
    12·1 answer
  • Which of these is not a component of physical fitness
    5·2 answers
  • 1. Explain the importance of doing muscular strength and muscular endurance activities.
    5·2 answers
  • A 61 kg person is in a head-on collision. The car's speed at impact is 14 m/s. Estimate the net force on the person if he or she
    15·1 answer
  • Which statement is an observation from newton experiment with light
    7·1 answer
  • A 250 kg engine block is being dragged across the pavement by a sturdy chain with a tension force of 10,000 N, as seen in the fr
    11·1 answer
  • This is the third time I’m asking, please, On a wet road, is a higher coefficient of friction on the tires safer or a lower one
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!