Answer:
B) the chemicals are gaining energy from the surroundings.
Explanation:
The positive sign of the energy difference in a chemical reaction would indicate that the chemicals are gaining energy from the surroundings. This is what happens in an endothermic reaction.
In an endothermic reaction, heat is absorbed from the surroundings hence the surrounding becomes colder at the end of the changes.
- Here the energy change is assigned a positive value.
- This is because the heat energy level of the final state is higher than that of the initial state.
- So, the difference gives a positive value.
Answer:
<u>A baseball speeds up as it falls through the air.</u>
<u>A bumper car hit by another car moves off at an angle.</u>
<u>A balloon flies across the room when the air is released.</u>
Explanation:
<em>Let me know if you need any other help</em>
<em />
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
\frac{dh}{dt}_{h=2cm} =\frac{40}{9\pi}\frac{cm}{2}
Explanation:
Hello,
The suitable differential equation for this case is:

As we're looking for the change in height with respect to the time, we need a relationship to achieve such as:

Of course,
.
Now, since the volume of a cone is
and the ratio
or
, the volume becomes:

We proceed to its differentiation:

Then, we compute 

Finally, at h=2:

Best regards.
Answer:
Highest pH(most basic)
Sr(OH)2(aq)
KOH (aq)
NH3(aq)
HF (aq)
HClO4(aq)
Lowest pH(most acidic)
Explanation:
The concentration of H+ ion will determine the pH of a solution. The pH actually reflects the ratio of H+ ion and OH- since both of them can combine into water. Solution with more H+ ion will have a lower pH and called acidic, while more OH- will have high pH and be called basic. Strong acid/base will be ionized more than weak acid/base.
Sr(OH)2(aq) = strong base, release 2 OH- ion per mole
KOH (aq) = Strong base, release 1 OH- per mole
NH3(aq) = weak base, release less than 1 OH- per mole
HF (aq) =strong acid, release 1 H+ per mole
HClO4(aq) = stronger acid, release 1 H+ per mole