Answer:
The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
Given;
intensity of light, I = 1 kW/m²
The radiation pressure of light is given as;

I kW = 1000 J/s
The energy flux density = 1000 J/m².s
The speed of light = 3 x 10⁸ m/s
Thus, the radiation pressure of the light is calculated as;

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Resistance-1 = (voltage-1) / (current-1) =
(12 V) / (0.185 A) = 64.9 ohms .
Resistance-2 = (voltage-2) / (current-2) =
(90 V ) / (1.25 A) = 72 ohms .
The resistance changed between situation-1 and situation-2 .
How did that happen ?
Power = (voltage) x (current)
Power-1 = (12) x (0.185) = 2.22 watts
Power-2 = (90) x (1.25) = 112.5 watts
The poor resistor dissipated 51 times as much power during
the second trial. It got all heated up, and its resistance went
through the roof.
Carbon resistors behave nicely and reliably, until you try to
toast bread or light up your bedroom with them.
Answer:
He is wrong!
Explanation:
Frequency refers to how many wave lengths pass in a second and speed is how fast the wave is traveling for example the speed of light goes really fast but has a mid-level frequency.
Hope this helps! ;-)
Answer:
non-accelerated movement
velocity versus time a horizontal straight line.
distance versus time gives a horizontal straight line.
accelerated motion
graph of velocity versus time s an inclined line and the slope
graph of distance versus time is a parabola of the form
Explanation:
In kinematics there are two types of steely and non-accelerated movements
In a the velocity of the body is constant therefore a speed hook against time gives a horizontal straight line.
A graph of distance versus time is a straight line whose slope is the velocity of the body
x = v t
In an accelerated motion the velocity changes linearly with time, so a graph of velocity versus time is an inclined line and the slope is the value of the acceleration of the body
v = v₀ + a t
A graph of distance versus time is a parabola of the form
x =v₀ t + ½ a t²