1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
2 years ago
10

Ralphie runs north 0.5 km, then turns east and runs 2.0 km, turns south and runs 1.5 km, turns west and runs another 1km. What i

s is distance he ran?
2√ km square root of 2 km
-2 km
2 km
5 km
Physics
1 answer:
Step2247 [10]2 years ago
7 0

Answer:

I think its 2km

Explanation:

bc if u put it out on a graph, it would essentially take about 4 jumps to get to your ending point, and assuming each jumb was 0.5 km. But if u dont trust me look at another answer bc I dont know if thats right or not.

You might be interested in
6. Willingness to take turns is one way we can express our attitudes in
NNADVOKAT [17]
The answer is A ..........
5 0
2 years ago
If electrons of energy 12.8 ev are incident on a gas of hydrogen atoms in their ground state, what are the energies of the photo
timama [110]
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 

4 0
3 years ago
Assume you need to design a hydronic system that can deliver 80,000 Btu/hr. What flow rate of water is required if the temperatu
PolarNik [594]

Answer:

At 10°F change in temperature

Mass flowrate = 1.01 kg/s = 2.227 lbm/s

Volumetric flowrate = 1010 m³/s = 35667.8 ft³/s

At 20°F change in temperature

Mass flowrate = 0.505 kg/s = 1.113 lbm/s

Volumetric flowrate = 505 m³/s = 17833.9 ft³/s

Explanation:

80000 btu/hr = 23445.7 W

P = ṁc(ΔT)

ṁ = MASS flowrate

c = specific heat capacity of water = 4182 J/kg.K,

ΔT = change in temperature = 10°F

To convert, a change of 18°F is equal to a change of 10°C

A change of 10°F = 10×10/18 = 5.556°C = 5.556K

P = ṁc(ΔT)

23445.7 = ṁ(4182 × 5.556)

ṁ = 23445.7/(4182 × 5.556)

ṁ = 1.01 kg/s = 2.227 lbm/s

In volumetric flow rate, Q = density × mass flowrate = 1000 × 1.01 = 1010 m³/s = 35667.8 ft³/s

For a change of 20°F,

ΔT = change in temperature = 20°F

To convert, a change of 18°F is equal to a change of 10°C

A change of 20°F = 20×10/18 = 11.1111°C = 11.111K

P = ṁc(ΔT)

23445.7 = ṁ(4182 × 11.111)

ṁ = 23445.7/(4182 × 11.111)

ṁ = 0.505 kg/s = 1.113 lbm/s

In volumetric flow rate, Q = density × mass flowrate = 1000 × 0.505 = 505 m³/s = 17833.9 ft³/s

Hope this Helps!!!

4 0
3 years ago
A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex
irina1246 [14]

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

3 0
3 years ago
True or false is Conservation of monestum is the same as Conservation of energy
fiasKO [112]

Answer:

Conservation of Energy: the total energy of the system is constant. Conservation of Momentum: the mass times the velocity of the center of mass is constant. Conservation of Angular Momentum: The total angular momentum of the system is constant.

Explanation:

none

3 0
3 years ago
Other questions:
  • how much energy is required to turn 20 gram cube of ice at a temperature of -10 degrees Celsius into liquid water at a temperatu
    10·1 answer
  • A skateboarder is standing at the top of a tall ramp waiting to begin a trip. The skateboarder has
    14·2 answers
  • A strong lightning bolt transfers an electric charge of about 31 C to Earth (or vice versa). How many electrons are transferred?
    15·1 answer
  • Marcus is on a train that travels 20 and takes 5 seconds to slow to 10 .
    13·1 answer
  • Why do footballers  need power?
    6·2 answers
  • Which would sound travel faster through: the ocean, the air, or a rock? Why?
    13·1 answer
  • Just as optical astronomers observe the visible light emitted by objects such as stars and galaxies, radio astronomers can also
    12·1 answer
  • 4. A girl is sitting on a tire swing that is attached with a rope that is 2.1 m in length. Her dad pushes her with a speed of 3.
    15·1 answer
  • If a car is moving at a constant velocity of 10 m/s, what is its acceleration?
    5·1 answer
  • An airplane is flying in a horizontal circle at a speed of 100 m/s. The 80.0 kg pilot does not want the centripetal acceleration
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!