Formula for Electric Field strength , E = V/d
where V = Voltage in volts, and d = distance of separation in meters.
d = 0.5 cm = 0.005 m, V = 12 V
E = V/d = 12 / 0.005
E = 2400
Electric Field Strength = 2400 Volts/meter
<h2>The option a is most appropriate </h2>
Explanation:
The total pressure due to liquid column at any place is the sum of
( i ) pressure due to liquid column called hydrostatic pressure
( ii ) the pressure due to air column above the liquid column , which is called the static pressure
Thus total pressure is the sum of hydrostatic and static pressure .
Thus the option a is most appropriate
To solve this problem we will apply the concepts related to wave velocity as a function of the tension and linear mass density. This is
Here
v = Wave speed
T = Tension
= Linear mass density
From this proportion we can realize that the speed of the wave is directly proportional to the square of the tension
Therefore, if there is an increase in tension of 4, the velocity will increase the square root of that proportion
The factor that the wave speed change is 2.
Answer:
The image distance is 20.0 cm.
Explanation:
Given that,
Power = 1.55 dp
Distance between book to eye = 26.0+3.00=29.0 cm
We need to calculate the focal length
Using formula of focal length
Put the value into the formula
We need to calculate the image distance
Using lens formula
Put the value into the formula
Hence, The image distance is 20.0 cm.