The balanced equation for the reaction is as follows
2Al + 3H₂SO₄ --> Al₂(SO₄)₃ + 3H₂
stoichiometry of Al to H₂SO₄ is 2:3
number of Al moles reacted - 15.0 mol
if 2 mol of Al react with 3 mol of H₂SO₄
then 15.0 mol of Al reacts with - 3/2 x 15.0 mol = 22.5 mol
22.5 mol of H₂SO₄ is required
Answer:
The equilibrium value of [CO] is 1.04 M
Explanation:
Chemical equilibrium is the state to which a spontaneously evolving chemical system, in which a reversible chemical reaction takes place. When this situation is reached, it is observed that the concentrations of substances, both reagents and reaction products, they remain constant over time. That is, the rate of reaction of reagents to products is the same as that of products to reagents.
Reagent concentrations and products in equilibrium are related by the equilibrium constant Kc. Being:
aA + bB ⇔ cC + dD
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Then this constant Kces equals the multiplication of the concentrations of the products raised to their stoichiometric coefficients between the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients.
In this case:
![Kc=\frac{[CH_{3}OH ]}{[CO]*[H_{2} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_%7B3%7DOH%20%5D%7D%7B%5BCO%5D%2A%5BH_%7B2%7D%20%5D%5E%7B2%7D%20%7D)
You know:
- Kc= 14.5
- [H₂]= 0.322 M
- [CH₃OH] =1.56 M
Replacing:
![14.5=\frac{1.56}{[CO]*0.322^{2} }](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B1.56%7D%7B%5BCO%5D%2A0.322%5E%7B2%7D%20%7D)
Solving:
![[CO]=\frac{1.56}{14.5*0.322^{2} }](https://tex.z-dn.net/?f=%5BCO%5D%3D%5Cfrac%7B1.56%7D%7B14.5%2A0.322%5E%7B2%7D%20%7D)
[CO]= 1.04 M
The equilibrium value of [CO] is 1.04 M
Answer: Yes I-P-Cl = 90
Explanation:
This is because the angle formed between I-P-Cl is perpendicular hence the angle is 90°
Answer:
About 547 grams.
Explanation:
We want to determine the mass of copper (II) bicarbonate produced when a reaction produces 2.95 moles of copper (II) bicarbonate.
To do so, we can use the initial value and convert it to grams using the molar mass.
Find the molar mass of copper (II) bicarbonate by summing the molar mass of each individual atom:

Dimensional Analysis:

In conclusion, about 547 grams of copper (II) bicarbonate is produced.
Answer: yo sorry this a hard one
Explanation:
bro