Explanation:
8935200 mins plzzzźzzz mark it brainest
Answer:
5 000 000 (5 million atoms)
Explanation:
Let us assume that a vanadium atom has a spherical shape.
diameter of a sphere = 2 x radius of the sphere
Thus,
Radius of a vanadium atom = 130 pm
= 130 x
m
The diameter of a vanadium atom = 2 x radius
= 2 x 130 x
= 260 x
m
Given a distance of 1.30 mm = 1.30 x
m,
The number of vanadium atoms required to span the distance = 
= 5000000
Therefore, the number of vanadium atom that would span a distance of 1.30 mm is 5 million.
Answer:
18 electrons
Explanation:
Note: The third energy level can actually hold up to 18 electrons, so it is not really filled when it has 8 electrons in it.
Answer:
The volume of 8.625 g of sulphur dioxide at RTP is approximately 3,230.84 cm³
Explanation:
The question requires the determination of the volume occupied by the gas based on the molar volume of a gas at STP
The given parameters of the sulphur dioxide, SO₂, gas are;
The mass of the given SO₂ gas = 8.625 g
The molar mass of SO₂ = 64.07 g/mol
The number of moles, 'n', in the given sample of SO₂ gas = Mass of SO₂/(Molar Mass of SO₂)
∴ The number of moles of SO₂ in the gas sample = 8.625 g/(64.07 g/mol) ≈ 0.134618386 moles
The molar volume of a gas at RTP is approximately 24 dm³/mole
24 dm³ = 24,000 cm³
∴ The molar volume of a gas at RTP is approximately 24,000 cm³/mole
The volume occupied by a gas at RTP = (The number of moles of the gas) × (The Molar Volume of a gas at RTP)
∴ The volume occupied by the 8.625 g of SO₂ gas at RTP = 0.134618386 moles × 24,000 cm³/mole ≈ 3,230.84 cm³
The volume occupied by the 8.625 g of SO₂ gas at RTP ≈ 3,230.84 cm³.