Answer:
1. 67.2 kJ/mol
Explanation:
Using the derived expression from Arrhenius Equation

Given that:
time
= 8.3 days = (8.3 × 24 ) hours = 199.2 hours
time
= 10.6 hours
Temperature
= 0° C = (0+273 )K = 273 K
Temperature
= 30° C = (30+ 273) = 303 K
Rate = 8.314 J / mol
Since 
Then we can rewrite the above expression as:








Answer:
Only
gives spontaneous reaction.
Explanation:
A redox reaction will be spontaneous if standard reduction potential (
) of the reaction is positive. Because it leads to negative standard gibbs free energy change (
), which is a thermodynamic condition for spontaneity of a reaction.

Where
and
represents standard reduction potential of reduction half cell and standard reduction potential of oxidation half cell.
(1) Oxidation:
; 
Reduction:
; 
So, 
Hence this pair will give spontaneous reaction.
(2) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
(3) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
(4) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
Answer:

Explanation:
Given that:
Half life = 30 min
Where, k is rate constant
So,
The rate constant, k = 0.0231 min⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.0231 min⁻¹
Initial concentration
= 7.50 mg
Final concentration
= 0.25 mg
Time = ?
Applying in the above equation, we get that:-

Answer:
c.- How much of the reactants are needed and how much product will made.
Explanation:
The moles is the matter unit used in chemistry to simplify some calculations, instead of using grams. Also the moles are very useful because the chemical reaction can be balanced.
When a Chemical reaction is balanced, then it can be easily to calculate how many moles are necessary to add in a process to obtain a quantity of grams of a product.