1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
13

Is a pair of adjacent supplementary angles forms a right angle yes or no and why

Mathematics
1 answer:
finlep [7]3 years ago
3 0
Yes because if they are the same size and they are about 45 degrees and at the same corner than yes they can
You might be interested in
What is 173.22 divided by 4?
Kisachek [45]
43.305 or in Mixed Number is 43 61/200 or in improper Fraction is 8661/200
3 0
3 years ago
Read 2 more answers
In each of these situations light refracts, except for one. Identify the case in which light is NOT refracted.
Eva8 [605]
B) sunlight travels through space - there is nothing to bounce off of until it hits an atmophere
3 0
3 years ago
Read 2 more answers
A farm had 480 acres more wheat than corn. After the farmers collected 80% of the wheat and 25% of the corn, the area of the whe
SVEN [57.7K]
A farm had 480 acres more wheat than corn. Let use "W" to represent the Wheat and let use "C" to represent the corn. Hence, we have below:
W=C+480

The farmers collected 80% of the wheat and 25% of the corn and the area of the wheat is 300 acres less than the area of the corn:
W-0.8W=C-0.25C+300
0.2W=0.75C+300
We have two equations, two unknowns:
0.2(C+480)=0.75C+300
0.2C+96=0.75C+300
0.55C=294
C=534.55
6 0
3 years ago
Read 2 more answers
Ted is a single guy who’s living the good life. The spreadsheet below shows Ted’s cash flow for a month.
svet-max [94.6K]
Its not there, the picture.
3 0
3 years ago
A county environmental agency suspects that the fish in a particular polluted lake have elevated mercury levels. To confirm that
suter [353]

Answer:

a. The 95% confidence interval for the difference between means is (0.071, 0.389).

b. There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

Step-by-step explanation:

The table with the data is:

Sample 1 Sample 2

0.580    0.382

0.711      0.276

0.571     0.570

0.666    0.366

0.598

The mean and standard deviation for sample 1 are:

M=\dfrac{1}{5}\sum_{i=1}^{5}(0.58+0.711+0.571+0.666+0.598)\\\\\\ M=\dfrac{3.126}{5}=0.63

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{5}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{4}\cdot [(0.58-(0.63))^2+...+(0.598-(0.63))^2]}\\\\\\            s=\sqrt{\dfrac{1}{4}\cdot [(0.002)+(0.007)+(0.003)+(0.002)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.015}{4}}=\sqrt{0.0037}\\\\\\s=0.061

The mean and standard deviation for sample 2 are:

M=\dfrac{1}{4}\sum_{i=1}^{4}(0.382+0.276+0.57+0.366)\\\\\\ M=\dfrac{1.594}{4}=0.4

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{4}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{3}\cdot [(0.382-(0.4))^2+(0.276-(0.4))^2+(0.57-(0.4))^2+(0.366-(0.4))^2]}\\\\\\            s=\sqrt{\dfrac{1}{3}\cdot [(0)+(0.015)+(0.029)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.046}{3}}=\sqrt{0.015}\\\\\\s=0.123

<u>Confidence interval</u>

We have to calculate a 95% confidence interval for the difference between means.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

The critical t-value for a 95% confidence interval is t=2.365.

The margin of error (MOE) can be calculated as:

MOE=t\cdot s_{M_d}=2.365 \cdot 0.07=0.159

Then, the lower and upper bounds of the confidence interval are:

LL=M_d-t \cdot s_{M_d} = 0.23-0.159=0.071\\\\UL=M_d+t \cdot s_{M_d} = 0.23+0.159=0.389

The 95% confidence interval for the difference between means is (0.071, 0.389).

<u>Hypothesis test</u>

This is a hypothesis test for the difference between populations means.

The claim is that the fish in this particular polluted lake have signficantly elevated mercury levels.

Then, the null and alternative hypothesis are:

H_0: \mu_1-\mu_2=0\\\\H_a:\mu_1-\mu_2> 0

The significance level is 0.05.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

Then, we can calculate the t-statistic as:

t=\dfrac{M_d-(\mu_1-\mu_2)}{s_{M_d}}=\dfrac{0.23-0}{0.07}=\dfrac{0.23}{0.07}=3.42

The degrees of freedom for this test are:

df=n_1+n_2-1=5+4-2=7

This test is a right-tailed test, with 7 degrees of freedom and t=3.42, so the P-value for this test is calculated as (using a t-table):

\text{P-value}=P(t>3.42)=0.006

As the P-value (0.006) is smaller than the significance level (0.05), the effect is significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

<u> </u>

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

7 0
3 years ago
Other questions:
  • Three people become infected with a virus that spreads quickly. Each day that passes, the number of infected people doubles. How
    13·2 answers
  • A scientist in the lab is measuring a beetle to be 32 millimeters long, how much is that in meters?
    11·2 answers
  • Solve for r. 12 = r - (34 - 2) Show your work!
    6·2 answers
  • Our team was treated to maggianos for winning our last game of the season. The total bill was $520. Our coach wants to leave a 2
    14·1 answer
  • Find the domain of f/g<br> f(x) = square root 4-x^2<br> g(x) = Square root 3x+4
    15·2 answers
  • Bubble algae cells can grow up to 5 cm in diameter. Calculate the surface area : volume ratio of this cell.
    6·1 answer
  • I will give brainliest tovthe first person that answers​
    8·1 answer
  • I need help on this
    8·1 answer
  • I’ll mark u as brainliest!! solve these two equations n show ya work !!
    8·1 answer
  • Find VALUE X<br> PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!