With constant angular acceleration
, the disk achieves an angular velocity
at time
according to

and angular displacement
according to

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

b. Under constant acceleration, the average angular velocity is equivalent to

where
and
are the final and initial angular velocities, respectively. Then

c. After 1.00 s, the disk has instantaneous angular velocity

d. During the next 1.00 s, the disk will start moving with the angular velocity
equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle
according to

which would be equal to

Normally, the water pressure inside a pump is higher than the vapor pressure: in this case, at the interface between the liquid and the vapor, molecules from the liquid escapes into vapour form. Instead, when the pressure of the water becomes lower than the vapour pressure, molecules of vapour can go inside the water forming bubbles: this phenomenon is called
cavitation.
So, cavitation occurs when the pressure of the water becomes lower than the vapour pressure. In our problem, vapour pressure at

is 1.706 kPa. Therefore, the lowest pressure that can exist in the pump without cavitation, at this temperature, is exactly this value: 1.706 kPa.
Answer:
flattened by pressure; squeezed or pressed together.
Explanation:
Answer:
<em>a. True</em>
<em></em>
Explanation:
I'll assume the question is about magnetic latches and locks.
Magnetic door locks use an electromagnetic force to stop doors from opening, so they are ideal for security. There are two main types of electric locking devices. Locking devices can either be a fail-secure locking device that remains locked when power is lost, or a fail-safe locking device that is unlocked when de-energized. An electromagnetic lock creates a magnetic field when energized or powered up, this causes an electromagnet and armature plate to become attracted to each other strongly enough to keep a door from opening.
When Debbie pushes the first cart she is using an applied force. An applied force is created when someone or something pushes another thing using, of course, an applied force. Now, when the second cart is being pushed by the first cart, this is also an applied force. You can tell because the first cart is being pushed using forced and this causes the second cart to be pushed using some of the force that is being transmitted to the first cart.
Debbie exerts applied force on the first cart. The first cart exert applied force on the second cart.
- Marlon Nunez