Answer:
Systems always tend toward a state of decreasing order unless more energy is provided into the system to counteract this tendency.
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
Answer:
<h3>The answer is 5160 N</h3>
Explanation:
To find the force acting on an object given it's mass and acceleration we use the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 1720 kg
acceleration = 3.0 m/s²
We have
Force = 1720 × 3
We have the final answer as
<h3>5160 N</h3>
Hope this helps you
Divide 56 by 60 then x the answer by 6 then you get 5.6km which is your answer.
A Porsche will always win no matter what