For this case we have that by definition, the area of a circle is given by:

Where:
r: It is the radius of the circle
As data we have that
Then, replacing we have:

Taking 
A = 113.04
So, the pool area is 
Answer:

Solution:
we are given that
Clayton needs to reflect the triangle below across the line y=x.
And as we know the reflection of the point (x,y) across the line y = x is the point (y, x).
Hence the new Traingle will be on the other side of the line y=x and position of x and y-coordinates of the vertices of the trangle gets interchanged.
Hence the Options that applies are:
C’ will move because all points move in a reflection.
The image and the pre-image will be congruent triangles. (Because reflection just changes the position of the trinagle not the property)
The image and pre-image will not have the same orientation because reflections flip figures.
Using the <u>normal distribution and the central limit theorem</u>, it is found that there is an approximately 0% probability that the total number of candies Kelly will receive this year is smaller than last year.
Normal Probability Distribution
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, for n instances of a normal variable, the mean is
while the standard deviation is
.
In this problem:
- Mean of 4 candies, hence
. - Standard deviation of 1.5 candies, hence
. - She visited 35 houses, hence

The probability is the <u>p-value of Z when X = 122</u>, hence:

By the Central Limit Theorem



has a p-value of 0.
Approximately 0% probability that the total number of candies Kelly will receive this year is smaller than last year.
A similar problem is given at brainly.com/question/24663213
Answer:
a. 1/27 b.3 1/2
Step-by-step explanation:
a.1/3*1/3*1/3=1/(3^3)=1/27
b.2 1/3*1 1/2*1= 3 1/2