By calculating the answer
Answer:
The Ka is 9.11 *10^-8
Explanation:
<u>Step 1: </u>Data given
Moles of HX = 0.365
Volume of the solution = 835.0 mL = 0.835 L
pH of the solution = 3.70
<u>Step 2:</u> Calculate molarity of HX
Molarity HX = moles HX / volume solution
Molarity HX = 0.365 mol / 0.835 L
Molarity HX = 0.437 M
<u />
<u>Step 3:</u> ICE-chart
[H+] = [H3O+] = 10^-3.70 = 1.995 *10^-4
Initial concentration of HX = 0.437 M
Initial concentration of X- and H3O+ = 0M
Since the mole ratio is 1:1; there will react x M
The concentration at the equilibrium is:
[HX] = (0.437 - x)M
[X-] = x M
[H3O+] = 1.995*10^-4 M
Since 0+x = 1.995*10^-4 ⇒ x=1.995*10^-4
[HX] = 0.437 - 1.995*10^-4 ≈ 0.437 M
[X-] = x = 1.995*10^-4 M
<u>Step 4: </u>Calculate Ka
Ka = [X-]*[H3O+] / [HX]
Ka = ((1.995*10^-4)²)/ 0.437
Ka = 9.11 *10^-8
The Ka is 9.11 *10^-8
Answer:
Secondary structure
Explanation:
Stricture of proteins can be categories into 4
Primary structure, secondary structure, tertiary structure and quaternary structure.
Primary structure are polypeptide chains. The polypeptide chains are formed by amino acids held together by peptide bonds.
Secondary structure refers to the folding of polypeptides chains. Two most common secondary structures are alpha helix and beta pleated structure. These folding occurs because of hydrogen bonding between the oxygen of the carbonyl of one amino acid and the hydrogen of another amino acid.
Therefore, hydrogen bonding is crucial for secondary structure of the protein.
Answer:
Explanation:
Electrons have negative charge and they orbit around the nucleus.
Protons have positive charge and are inside the nucleus
Neutrons have neutral charge they are also inside the nucleus
the nucleus is the middle of the atom
the electron cloud is a cloud which the electrons travel around
In the combustion process using excess oxygen, each mole of methane results to 1 mole of co2 while ethane produces 2 moles of Co2. Under same conditions, these can be translated to volume. Hence the total volume absorbed is 10 cm3 + 20 cm3 = 30 cm3.