Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


The charge of the object must be 
Answer: Option C
<u>Explanation:</u>
Suppose an electric charge can be represented by the symbol Q. This electric charge generates an electric field; Because Q is the source of the electric field, we call this as source charge. The electric field strength of the source charge can be measured with any other charge anywhere in the area. The test charges used to test the field strength.
Its quantity indicated by the symbol q. In the electric field, q exerts an electric, either attractive or repulsive force. As usual, this force is indicated by the symbol F. The electric field’s magnitude is simply defined as the force per charge (q) on Q.

Here, given E = 4500 N/C and F = 0.05 N.
We need to find charge of the object (q)
By substituting the given values, we get

Answer:
the time needed for her to close the door is 1.36 s.
Explanation:
given information:
Force, F = 220 N
width, r = 1.40 m
weight, W = 790 N
height, h = 3.00 m
angle, θ = 90° = π/2
to find the times needed to close the door we can use the following equation
θ = ω₀t + 1/2 αt²
where
θ = angle
ω = angular velocity
α = angular acceleration
t = time
in this case, the angular velocity is zero. thus,
θ = 1/2 αt²
now, we can find the angular speed by using the torque formula
τ = I α
where
τ = torque
I = Inertia
we know that
τ = F r
and
I = 1/3 mr²
so,
τ = I α
F r = 1/3 mr² α
α = 3 F/mr
= 3 F/(w/g)r
= 3 (220)/(790/9.8) 1.4
= 5.85 rad/s²
θ = 1/2 αt²
π/2 = 1/2 5.85 t²
t = 1.36 s
One is when you are measuring a distance in space! I don't know the other but hope you find another example!