Answer:
0.026 V
Explanation:
Given that,
Inductance of the coil, L = 6 mH
The current changes from 0.2 A to 1.5 A in a time interval of 0.3 s
We need to find the magnitude of the average induced emf in the coil during this time interval. The formula for the induced emf is given by :

So, the magnitude of induced emf is 0.026 volts.
The density of the block is 1.25 cm³
The correct answer to the question is Option B. 1.25 cm³
To solve this question, we'll begin by calculating the volume of the block. This can be obtained as follow:
Length = 7 cm
Height = 4 cm
Width = 3 cm
<h3>Volume =? </h3>
Volume = Length × Width × Height
Volume = 7 × 3 × 4
<h3>Volume = 84 cm³</h3>
Thus, the volume of the block is 84 cm³
Finally, we shall determine the density of the block. This can be obtained as follow:
Density is defined as mass per unit volume i.e

Mass of block = 105 g
Volume of block = 84 cm³
<h3>Density of block =? </h3>

<h3>Density of block = 1.25 cm³</h3>
Therefore, the density of the block is 1.25 cm³.
Hence, Option B. 1.25 cm³ gives the correct answer to the question.
Learn more: brainly.com/question/2040396?referrer=searchResults
Answer:
σ =4.180×10^{-9} C/m^2
Explanation:
electric field due to non conducting sheet is

the force acting on the piece of Styrofoam
Eq= mg
⇒E= mg/q
now,

⇒

charge per unit area (in C/m2) on the plastic sheet σ =4.180×10^{-9} C/m^2
Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
I DID A Science PROJECT ON THIS >:)))
basically light travels into the eye to the retina located on the back of the eye. the retina is covered withe millions of light sensitive cells called Rods and cones. when these cells detect light they send signals to the brain that help detect color.
the color of an object is determined by the wavelengths of light that it reflects. it's determined by the arrangement of electrons in the atoms of that substance that will absorb and re-emit photons of particular energies according to quantum laws.