The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²
<h3>
Magnetic dipole moment of the bar magnet</h3>
The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

where;
- B is magnetic field
- m is dipole moment
- μ is permeability of free space
m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)
m = 1.2 Am²
The complete question is below:
What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.
Learn more about dipole moment here: brainly.com/question/27590192
#SPJ11
In Newton's Third law of motion, the 'action' and 'reaction' forces act on different objects. That's why they don't cancel each other out and always result in zero force.
Velocity is the answer..
hope that helps
Yes. Kinetic energy is a form of mechanical energy and friction will turn that kinetic energy into heat.