Answer:
the magnitude of the force that the wire will experience = 1.8 N
Explanation:
The force on a current carrying wire placed in a magnetic field is :
F = Idl × B
where:
I = current flowing through the wire
dl = length of the wire
B = magnetic field
We can equally say that :

where : sin θ is the angle at which the orientation from the magnetic field to the wire occurs = 30°
Then;

Given that:
L = 20 cm = 0.2 m
I = 6 A
B = 3 T
θ = 30°
Then:
F = 3 × 6 × 0.2 sin 30°
F = 1.8 N
Therefore, the magnitude of the force that the wire will experience = 1.8 N
Accelerating voltage<span> is the difference in potential between the filament and the anode,and it can be varied between 5 KeV and 30 KeV on the S-500 and between 2 KeV and 30 KeV on the S-450. As the </span>voltage<span> is increased, the electrons travel with higher velocity and are more energetic.</span>
Answer:
The three different examples of the accelerated motion are Falling/dropping of ball, Standing in circular rotating space, moving around the circle.
Explanation:
Acceleration is the change in velocity, which is related to the speed and direction in which the object is travelling. Hence, speeding up, slowing down and turning are few types . A simple example would be dropping a ball: as it falls its speed increases, which is a type of acceleration. A more complicated example would be standing in a circular, rotating space station. A point on the station moves in a circle, meaning that as it travels it must be turning (to remain in circular motion) making this another example of acceleration
The distance between city a and city b is 833.345 miles.
We know that
1°=60'
The distance of city a from the initial ray is calculated as
x_a=3960*tan45.46°=4024.101 miles
The distance of city b from the initial ray is calculated as
x_b=3960*tan 38.86°=3190.75 miles
Now the distance between city a and b is equal to
4024.101-3190.75=833.345 miles
This is the vertical distance between the cities.
Answer:
R = 9.85 ohm , r = 0.85 ohm
Explanation:
Let the two resistances by r and R.
when they are connected in series:
V = 12 V
i = 1.12 A
The equivalent resistance when they are connected in series is
Rs = r + R
So, By using Ohm's law
V = i Rs
Rs = V / i = 12 / 1.12 = 10.7 ohm
R + r = 10.7 ohm .... (1)
When they are connected in parallel:
V = 12 V
i = 9.39 A
The equivalent resistance when they are connected in parallel

So, By using Ohm's law
V = i Rp
Rp = V / i = 12 / 9.39 = 1.28 ohm
.... (2)
by substituting the value of R + r from equation (1) in equation (2), we get
r R = 8.36 ..... (3)

..... (4)
By solvng equation (1) and (4), we get
R = 9.85 ohm , r = 0.85 ohm