Answer:
7.5 moles
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
3Cu + 2H3PO4 —> Cu3(PO4)2 + 3H2
From the balanced equation above,
3 moles of Cu reacted with 2 moles of H3PO4.
Therefore, Xmol of Cu will react with 5 moles of H3PO4 i.e
Xmol of Cu = (3 x 5)/2
Xmol of Cu = 7.5 moles
Therefore, 7.5 moles of Cu are needed to react with 5 moles of H3PO4.
The enthalpy change of the reaction when sodium hydroxide and sulfuric acid react can be calculated using the mass of solution, temperature change, and specific heat of water.
The balanced chemical equation for the reaction can be represented as,

Given volume of the solution = 101.2 mL + 50.6 mL = 151.8 mL
Heat of the reaction, q =
Δ
m is mass of the solution = 151.8 mL * 
C is the specific heat of solution = 4.18 
ΔT is the temperature change = 
q = 
Moles of NaOH =
NaOH
Moles of
= 
Enthalpy of the reaction = 