Correct Answer: compound because the atoms of the elements are combined in a fixed proportion.
Answer:
A beaker
Step-by-step explanation:
Specifically, I would use a 250 mL graduated beaker.
A beaker is appropriate to measure 100 mL of stock solution, because it's easy to pour into itscwide mouth from a large stock bottle.
You don't need precisely 100 mL solution.
If the beaker is graduated, you can easily measure 100 mL of the stock solution.
Even if it isn't graduated, 100 mL is just under half the volume of the beaker, and that should be good enough for your purposes (you will be using more precise measuring tools during the experiment).
Boyle’s law gives the relationship between pressure and volume of gases. It states that at constant temperature the pressure of gas is inversely proportional to volume of gas.
PV = k
Where P is pressure V is volume and k is constant
P1V1 = P2V2
Parameters at STP are on the left side and parameters for the second instance are on the right side of the equation
P1 - standard pressure - 1.0 atm
Substituting the values in the equation
1.0 atm x 5.00 L = P x 15.0 L
P = 0.33 atm
New pressure is 0.33 atm
Answer: 36.53g
Explanation:
First we need to find the amount of NaCl that dissolves in 1L of the solution that produced 5M of NaCl
Molarity = 5M
MM of NaCl = 58.45
Molarity = Mass conc (g/L) / MM
Mass conc. (g/L) of NaCl = Molarity x MM
= 5 x 58.45 = 292.25g
Next, we need to find the amount that will dissolve in 125mL(i.e 0.125L)
From the calculations above,
292.25g of NaCl dissolved in 1L
Therefore Xg of NaCl will dissolve in 0.125L of the solution i.e
Xg of NaCl = 292.25 x 0.125 = 36.53g.
Therefore 36.53g of NaCl will dissolve in 125mL of the solution
Answer:
pH ( potential Hydrogen ) is a negative logarithm of molar concentration of hydrogen ions.
![pH = - log[H {}^{ + } ]](https://tex.z-dn.net/?f=pH%20%3D%20%20-%20%20log%5BH%20%7B%7D%5E%7B%20%2B%20%7D%20%5D)
therefore:
