Answer:
Kindly follow the steps as shown below.
Explanation:
Answer:
S = 5.7209 M
Explanation:
Given data:
B = 20.1 m
conductivity ( K ) = 14.9 m/day
Storativity ( s ) = 0.0051
1 gpm = 5.451 m^3/day
calculate the Transmissibility ( T ) = K * B
= 14.9 * 20.1 = 299.5 m^2/day
Note :
t = 1
U = ( r^2* S ) / (4*T*<em> t </em>)
= ( 7^2 * 0.0051 ) / ( 4 * 299.5 * 1 ) = 2.0859 * 10^-4
Applying the thesis method
W(u) = -0.5772 - In(U)
= 7.9
next we calculate the pumping rate from well ( Q ) in m^3/day
= 500 * 5.451 m^3 /day
= 2725.5 m^3 /day
Finally calculate the drawdown at a distance of 7.0 m form the well after 1 day of pumping
S = 
where : Q = 2725.5
T = 299.5
W(u) = 7.9
substitute the given values into equation above
S = 5.7209 M
Answer:
Hence, the three effects of electric current are heating effect, magnetic effect and chemical effect.
Answer:
The design process is at the verify phase of Design for Six Sigma
Explanation:
In designing for Six Sigma, DFSS, is a product or process design methodology of which the goal is the detailed identification of the customer business needs by using measurements tools such as statistical data, and incorporating the identified need into the created product which in this case is the hydraulic robot Kristin Designed
Implementation of DFSS follows a number of stages that are based on the DMAIC (Define - Measure - Analyze - Improve) projects such as the DMADV which stand for define - measure - analyze - verify
Therefore, since Kristin is currently ensuring that the robot is working correctly and meeting the needs of her client the design process is at the verify phase.