Answer:
Yes, fracture will occur
Explanation:
Half length of internal crack will be 4mm/2=2mm=0.002m
To find the dimensionless parameter, we use critical stress crack propagation equation
and making Y the subject
Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness, is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain
When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m
and making K the subject
and substituting 260 MPa for while a is taken as 0.003m and Y is already known
Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material
The back-work ratio much higher in the Brayton cycle than in the Rankine cycle because a gas cycle is the Brayton cycle, while a steam cycle is the Rankine cycle. Particularly, the creation of water droplets will be a constraint on the steam turbine's efficiency. Since gas has a bigger specific volume than steam, the compressor will have to work harder while using gas.
<h3>What are modern Brayton engines?</h3>
Even originally Brayton exclusively produced piston engines, modern Brayton engines are virtually invariably of the turbine variety. Brayton engines are also gas turbines.
<h3>What is the ranking cycle?</h3>
A gas cycle is the Brayton cycle, while the Ranking cycle is a steam cycle. The production of water droplets will especially decrease the steam turbine's performance. Gas-powered compressors will have to do more work since gas's specific volume is greater than steam's.
Th
To know more about Rankine cycle, visit: brainly.com/question/13040242
#SPJ4
Given:
diameter of sphere, d = 6 inches
radius of sphere, r = = 3 inches
density, = 493 lbm/
S.G = 1.0027
g = 9.8 m/ = 386.22 inch/
Solution:
Using the formula for terminal velocity,
= (1)
where,
V = volume of sphere
= drag coefficient
Now,
Surface area of sphere, A =
Volume of sphere, V =
Using the above formulae in eqn (1):
=
=
=
Therefore, terminal velcity is given by:
= inch/sec
Answer:
13.6mm
Explanation:
We consider diameter to be a chord that runs through the center point of the circle. It is considered as the longest possible chord of any circle. The center of a circle is the midpoint of its diameter. That is, it divides it into two equal parts, each of which is a radius of the circle. The radius is half the diameter.
See attachment for the step by step solution of the problem