Answer:
33.429 N-m
Explanation:
Given :
Inclination angle of two shaft, α = 20°
Speed of shaft A,
= 1000 rpm
Mass of flywheel, m = 30 kg
Radius of Gyration, k =100 mm
= 0.1 m
Now we know that for maximum velocity,


= 1064.1 rpm
Now we know
Mass of flywheel, m = 30 kg
Radius of Gyration, k =100 mm
= 0.1 m
Therefore moment of inertia of flywheel, I = m.
=30 X 
= 0.3 kg-
Now torque on the output shaft
T₂ = I x ω
= 0.3 X 1064.2 rpm
= 
= 33.429 N-m
Torque on the Shaft B is 33.429 N-m
Answer:
probability P = 0.32
Explanation:
this is incomplete question
i found complete A manufactures makes integrated circuits that each have a resistance layer with a target thickness of 200 units. A circuit won't work well if this thickness varies too much from the target value. These thickness measurements are approximately normally distributed with a mean of 200 units and a standard deviation of 12 units. A random sample of 17 measurements is selected for a quality inspection. We can assume that the measurements in the sample are independent. What is the probability that the mean thickness in these 16 measurements x is farther than 3 units away from the target value?
solution
we know that Standard error is expess as
Standard error = 
Standard error =
Standard error = 3
so here we get Z value for 3 units away are from mean are
mean = -1 and + 1
so here
probability P will be
probability P = P( z < -1 or z > 1)
probability P = 0.1587 + 0.1587
probability P = 0.3174
probability P = 0.32
Answer:
The growth of crack formation in a corrosive environment.
Explanation:
Answer:
Here are some cool ideas that you could do
-Zero fuel aircraft
-Advanced Space Propulsion Technologies
-Smart Automation and Blockchain
These are some things I've been working on for a few years lol, maybe you will have more luck
Answer:
Complete question is:
write the following decorators and apply them to a single function (applying multiple decorators to a single function):
1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”
2. The decorator will return the wrapper per usual.
3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.
4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.
5. Apply both decorators (by @ operator to greetings()).
6. Invoke the greetings() function and capture the result.
Code :
def strong_decorator(func):
def func_wrapper(name):
return "<strong>{0}</strong>".format(func(name))
return func_wrapper
def em_decorator(func):
def func_wrapper(name):
return "<em>{0}</em>".format(func(name))
return func_wrapper
@strong_decorator
@em_decorator
def Greetings(name):
return "{0}".format(name)
print(Greetings("Hello"))
Explanation: