Anything greater than total vacuum is technically a form of pressure
Answer:
See explanation
Explanation:
The magnetic force is
F = qvB sin θ
We see that sin θ = 1, since the angle between the velocity and the direction of the field is 90º. Entering the other given quantities yields
F
=
(
20
×
10
−
9
C
)
(
10
m/s
)
(
5
×
10
−
5
T
)
=
1
×
10
−
11
(
C
⋅
m/s
)
(
N
C
⋅
m/s
)
=
1
×
10
−
11
N
Answer:
D
Explanation:
Confidential data is not supposed to be shared amongst others.
Answer:
DIAMETER = 9.797 m
POWER = 
Explanation:
Given data:
circular windmill diamter D1 = 8m
v1 = 12 m/s
wind speed = 8 m/s
we know that specific volume is given as

where v is specific volume of air
considering air pressure is 100 kPa and temperature 20 degree celcius

v = 0.8409 m^3/ kg
from continuity equation





mass flow rate is given as


the power produced ![\dot W = \dot m \frac{ V_1^2 - V_2^2}{2} = 717.3009 [\frac{12^2 - 8^2}{2} \times \frac{1 kJ/kg}{1000 m^2/s^2}]](https://tex.z-dn.net/?f=%5Cdot%20W%20%3D%20%5Cdot%20m%20%5Cfrac%7B%20V_1%5E2%20-%20V_2%5E2%7D%7B2%7D%20%3D%20717.3009%20%5B%5Cfrac%7B12%5E2%20-%208%5E2%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2Fs%5E2%7D%5D)

Answer:
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Explanation:
given data
pressure p1 = 1.4 MPa = 14 bar
temperature t1 = 32°C
exit pressure = 0.08 MPa = 0.8 bar
to find out
the quality of the refrigerant exiting the expansion valve
solution
we know here refrigerant undergoes at throtting process so
h1 = h2
so by table A 14 at p1 = 14 bar
t1 ≤ Tsat
so we use equation here that is
h1 = hf(t1) = 332.17 kJ/kg
this value we get from table A13
so as h1 = h2
h1 = h(f2) + x(2) * h(fg2)
so
exit quality = 
exit quality = 
so exit quality = 0.2337 = 23.37 %
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %