Now let’s say you’re on the Moon. If you were to drop a hammer and a feather from the same height, which would hit the ground first?
Trick Question! On the moon both objects would hit the ground at the same time. On Earth, the hammer lands first.
So yeah, the student is right. Galileo gave us this theory long ago.
Answer:
E = 31.329 N/C.
Explanation:
The differential electric field
at the center of curvature of the arc is
<em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>
where
is the radius of curvature.
Now
,
where
is the charge per unit length, and it has the value

Thus, the electric field at the center of the curvature of the arc is:


Now, we find
and
. To do this we ask ourselves what fraction is the arc length 3.0 of the circumference of the circle:

and this is
radians.
Therefore,

evaluating the integral, and putting in the numerical values we get:


An object that's moving doesn't necessarily change its speed or acceleration. Also, the force applied to it doesn't need to change ... in fact, a moving object doesn't need ANY force applied to it in order to keep moving.
But any moving object WILL have a change in its position ... THAT's how you know it's moving, and that's WHY you say "It's moving !". (choice-B)
We take the derivative of Ohm's law with respect to time: V = IR
Using the product rule:
dV/dt = I(dR/dt) + R(dI/dt)
We are given that voltage is decreasing at 0.03 V/s, resistance is increasing at 0.04 ohm/s, resistance itself is 200 ohms, and current is 0.04 A. Substituting:
-0.03 V/s = (0.04 A)(0.04 ohm/s) + (200 ohms)(dI/dt)
dI/dt = -0.000158 = -1.58 x 10^-4 A/s