Answer:
0.695s
Explanation:
From Hooke's law, the restoring force is given has
F = -ky .......1
Where F is the force, y is the spring displacement and k force constant of the spring.
Also recall,
F=mg ............ 2
Where m is the mass of object, g is the acceleration due to gravity.
Equating 1 and 2
Ky = mg
Given that g=9.8m/s2 , y is 3.4cm and g is 8g
K×3.4/100m =8/1000kg × 9.8m/s2
K= ( 0.008kg × 9.8m/s2 ) ÷ 0.034
K= 0.0784÷0.035
K=2.24N/m
Mass ofvthe second object is 25g =0.025kg
Period of oscillation T
T=2π√m/k
T=2×3.142√0.025/2.24
T=6.284√0.0111
T=0.659seconds
Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is 
Explanation:
Looking at the graph in the diagram we see each unit is equal to 1 both in the x axis and in the y- axis
Now the value of B along the x axis is

and along the y axis the value is

Hence the vector B is

That is the answer to your problem
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km